Download Free Mixotrophy In Protists From Model Systems To Mathematical Models 2nd Edition Book in PDF and EPUB Free Download. You can read online Mixotrophy In Protists From Model Systems To Mathematical Models 2nd Edition and write the review.

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Respiration represents the major area of ignorance in our understanding of the global carbon cycle. In spite of its obvious ecological and biogeochemical importance, most oceanographic and limnological textbooks invariably deal with respiration only superficially and as an extension of production and other processes. The objective of this book is to fill this gap and to provide the first comprehensive review of respiration in the major aquatic systems of the biosphere. The introductory chapters review the general importance of respiration in aquatic systems, and deal with respiration within four key biological components of aquatic systems: bacteria, algae, heterotrophic protists, and zooplankton. The aim of this first part is to provide the backbone for the analysis and interpretation of ecosystem-level respiration in a variety of aquatic environments. The central chapters of the book review respiration in major aquatic ecosystems including freshwater wetlands, lakes and rivers, estuaries, coastal and open ocean and pelagic ecosystems, as well as respiration in suboxic environments. For each major ecosystem, the corresponding chapter provides a synthesis of methods used to assess respiration, outlines the existing information and data on respiration, discusses its regulation and link to biotic and abiotic factors, and finally provides regional and global estimates of the magnitude of respiration. The final chapter provides a general synthesis of the information and data provided in the different sections, and further attempts to place aquatic respiration within the context of the global carbon budget.
Protists are by far the most diverse and abundant eukaryotes in soils. Nevertheless, very little is known about individual representatives, the diversity and community composition and ecological functioning of these important organisms. For instance, soil protists are commonly lumped into a single functional unit, i.e. bacterivores. This work tackles missing knowledge gaps on soil protists and common misconceptions using multi-methodological approaches including cultivation, microcosm experiments and environmental sequencing. In a first part, several new species and genera of amoeboid protists are described showing their immense unknown diversity. In the second part, the enormous complexity of soil protists communities is highlighted using cultivation- and sequence-based approaches. In the third part, the present of diverse mycophagous and nematophagous protists are shown in functional studies on cultivated taxa and their environmental importance supported by sequence-based approaches. This work is just a start for a promising future of soil Protistology that is likely to find other important roles of these diverse organisms.
Harmful algal can cause a variety of deleterious effects, including the poisoning of fish and shellfish, habitat disruptions for many organisms, water discoloration, beach fouling, and even toxic effects for humans. In this volume, international experts provide an in-depth analysis of harmful algae topics and offer a comprehensive synthesis of the latest research in the field.
This important new book by Colin Reynolds covers the adaptations, physiology and population dynamics of phytoplankton communities. It provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and in addition reviews recent advances in community ecology.
The term "zooplankton" describes the community of floating, often microscopic, animals that inhabit aquatic environments. Being near the base of the food chain, they serve as food for larger animals, such as fish. The ICES (International Council for the Exploration of the Sea) Zooplankton Methodology Manual provides comprehensive coverage of modern techniques in zooplankton ecology written by a group of international experts. Chapters include sampling, acoustic and optical methods, estimation of feeding, growth, reproduction and metabolism, and up-to-date treatment of population genetics and modeling. This book will be a key reference work for marine scientists throughout the world. - Sampling and experimental design - Collecting zooplankton - Techniques for assessing biomass and abundance - Protozooplankton enumeration and biomass estimation - New optical and acoustic techniques for estimating zooplankton biomass and abundance - Methods for measuring zooplankton feeding, growth, reproduction and metabolism - Population genetic analysis of zooplankton - Modelling zooplankton dynamics This unique and comprehensive reference work will be essential reading for marine and freshwater research scientists and graduates entering the field.
Aquatic Photosynthesis is a comprehensive guide to understanding the evolution and ecology of photosynthesis in aquatic environments. This second edition, thoroughly revised to bring it up to date, describes how one of the most fundamental metabolic processes evolved and transformed the surface chemistry of the Earth. The book focuses on recent biochemical and biophysical advances and the molecular biological techniques that have made them possible. In ten chapters that are self-contained but that build upon information presented earlier, the book starts with a reductionist, biophysical description of the photosynthetic reactions. It then moves through biochemical and molecular biological patterns in aquatic photoautotrophs, physiological and ecological principles, and global biogeochemical cycles. The book considers applications to ecology, and refers to historical developments. It can be used as a primary text in a lecture course, or as a supplemental text in a survey course such as biological oceanography, limnology, or biogeochemistry.
Oceans account for 50% of the anthropogenic CO2 released into the atmosphere. During the past 15 years an international programme, the Joint Global Ocean Flux Study (JGOFS), has been studying the ocean carbon cycle to quantify and model the biological and physical processes whereby CO2 is pumped from the ocean's surface to the depths of the ocean, where it can remain for hundreds of years. This project is one of the largest multi-disciplinary studies of the oceans ever carried out and this book synthesises the results. It covers all aspects of the topic ranging from air-sea exchange with CO2, the role of physical mixing, the uptake of CO2 by marine algae, the fluxes of carbon and nitrogen through the marine food chain to the subsequent export of carbon to the depths of the ocean. Special emphasis is laid on predicting future climatic change.
Harmful algal blooms (HABs) - blooms that cause fish kills, contaminate seafood with toxins, or cause human or ecological health impacts and harm to local economies - are occurring more often, in more places and lasting longer than in past decades. This expansion is primarily the result of human activities, through increased nutrient inputs and various aspects of climate change. The Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) programme promoted international collaboration to understand HAB population dynamics in various oceanographic regimes and to improve the prediction of HABs. This volume introduces readers to the overarching framework of the GEOHAB programme, factors contributing to the global expansion of harmful algal blooms, the complexities of HABs in different habitats, and the forward-looking issues to be tackled by the next generation of GEOHAB, GlobalHAB. The programme brought together an international team of contributing scientists and ecosystem managers, and its outcomes will greatly benefit the international research community.