Download Free Mixed Refrigerant Processes For Natural Gas Liquefaction Book in PDF and EPUB Free Download. You can read online Mixed Refrigerant Processes For Natural Gas Liquefaction and write the review.

Most conventional cryogenic refrigerators and liquefiers operate with pure fluids, the major exception being natural gas liquefiers that use mixed refrigerant processes. The fundamental aspects of mixed refrigerant processes, though very innovative, have not received the due attention in open literature in view of commercial interests. Hundreds of patents exist on different aspects of mixed refrigerant processes. However, it is difficult to piece together the existing information to choose an appropriate process and an optimum composition or a given application. The aim of the book is to teach (a.) the need for refrigerant mixtures, (b.) the type of mixtures that can be used for different refrigeration and liquefaction applications, (c.) the different processes that can be used and (d.) the methods to be adopted for choosing the components of a mixture and their concentration for different applications.
Liquefied natural gas (LNG) is a commercially attractive phase of the commodity that facilitates the efficient handling and transportation of natural gas around the world. The LNG industry, using technologies proven over decades of development, continues to expand its markets, diversify its supply chains and increase its share of the global natural gas trade. The Handbook of Liquefied Natural Gas is a timely book as the industry is currently developing new large sources of supply and the technologies have evolved in recent years to enable offshore infrastructure to develop and handle resources in more remote and harsher environments. It is the only book of its kind, covering the many aspects of the LNG supply chain from liquefaction to regasification by addressing the LNG industries' fundamentals and markets, as well as detailed engineering and design principles. A unique, well-documented, and forward-thinking work, this reference book provides an ideal platform for scientists, engineers, and other professionals involved in the LNG industry to gain a better understanding of the key basic and advanced topics relevant to LNG projects in operation and/or in planning and development. - Highlights the developments in the natural gas liquefaction industries and the challenges in meeting environmental regulations - Provides guidelines in utilizing the full potential of LNG assets - Offers advices on LNG plant design and operation based on proven practices and design experience - Emphasizes technology selection and innovation with focus on a "fit-for-purpose design - Updates code and regulation, safety, and security requirements for LNG applications
Natural gas is playing an increasing role in meeting world energy demands because of its abundance, versatility, and its clean burning nature. As a result, lots of new gas exploration, field development and production activities are under way, especially in places where natural gas until recently was labeled as "stranded. Because a significant portion of natural gas reserves worldwide are located across bodies of water, gas transportation in the form of LNG or CNG becomes an issue as well. Finally natural gas is viewed in comparison to the recently touted alternatives. Therefore, there is a need to have a book covering all the unique aspects and challenges related to natural gas from the upstream to midstream and downstream. All these new issues have not been addressed in depth in any existing book. To bridge the gap, Xiuli Wang and Michael Economides have written a new book called Advanced Natural Gas Engineering. This book will serve as a reference for all engineers and professionals in the energy business. It can also be a textbook for students in petroleum and chemical engineering curricula and in training departments for a large group of companies.
Drawing on Frank G. Kerry's more than 60 years of experience as a practicing engineer, the Industrial Gas Handbook: Gas Separation and Purification provides from-the-trenches advice that helps practicing engineers master and advance in the field. It offers detailed discussions and up-to-date approaches to process cycles for cryogenic separation of
Advances in Gas Processing: Proceedings of the 2nd Annual Gas Processing Symposium 11-1 4 January, 2010, Doha, Qatar, reviews the state of knowledge in gas processing. The contributions are organized around five main themes: (i) environmental sustainability; (ii) natural gas processing technologies; (iii) energy efficiency in operations; (iv) design and safety; and (v) operational excellence. The papers on environmental sustainability cover topics such as the biogasification of waste monoethanolamine; the role of LNG in a carbon constrained world; and sustainable water management. The papers on natural gas processing technologies include the removal of acid gases from natural gas streams via membrane technology and selective control of Fischer-Tropsch synthesis hydrocarbons product distribution. The papers on energy efficiency in operations cover lifted turbulent jet flame in a cross-flow; novel hybrid biomass and coal processes; and the adoption of plug-in hybrid electric vehicles (PHEVs). The papers on design and safety include studies on the optimal design and operation of a GTL process and efficient design, operating, and control strategies for LNG plants. The papers on operational excellence deal with topics such as chemicals in gas processing; the monitoring and optimization of hydrocarbon separation equipment; and the inhibition of gas hydrate formation.* Provides a state-of-the-art review of gas processing technologies * Covers design, operating tools, and methodologies * Includes case studies and practical applications
Exergetic Analysis
The definitive text/reference for students, researchers and practicing engineers This book provides comprehensive coverage on refrigeration systems and applications, ranging from the fundamental principles of thermodynamics to food cooling applications for a wide range of sectoral utilizations. Energy and exergy analyses as well as performance assessments through energy and exergy efficiencies and energetic and exergetic coefficients of performance are explored, and numerous analysis techniques, models, correlations and procedures are introduced with examples and case studies. There are specific sections allocated to environmental impact assessment and sustainable development studies. Also featured are discussions of important recent developments in the field, including those stemming from the author’s pioneering research. Refrigeration is a uniquely positioned multi-disciplinary field encompassing mechanical, chemical, industrial and food engineering, as well as chemistry. Its wide-ranging applications mean that the industry plays a key role in national and international economies. And it continues to be an area of active research, much of it focusing on making the technology as environmentally friendly and sustainable as possible without compromising cost efficiency and effectiveness. This substantially updated and revised edition of the classic text/reference now features two new chapters devoted to renewable-energy-based integrated refrigeration systems and environmental impact/sustainability assessment. All examples and chapter-end problems have been updated as have conversion factors and the thermophysical properties of an array of materials. Provides a solid foundation in the fundamental principles and the practical applications of refrigeration technologies Examines fundamental aspects of thermodynamics, refrigerants, as well as energy and exergy analyses and energy and exergy based performance assessment criteria and approaches Introduces environmental impact assessment methods and sustainability evaluation of refrigeration systems and applications Covers basic and advanced (and hence integrated) refrigeration cycles and systems, as well as a range of novel applications Discusses crucial industrial, technical and operational problems, as well as new performance improvement techniques and tools for better design and analysis Features clear explanations, numerous chapter-end problems and worked-out examples Refrigeration Systems and Applications, Third Edition is an indispensable working resource for researchers and practitioners in the areas of Refrigeration and Air Conditioning. It is also an ideal textbook for graduate and senior undergraduate students in mechanical, chemical, biochemical, industrial and food engineering disciplines.
Designed as an undergraduate-level textbook in Chemical Engineering, this student-friendly, thoroughly class-room tested book, now in its second edition, continues to provide an in-depth analysis of chemical engineering thermodynamics. The book has been so organized that it gives comprehensive coverage of basic concepts and applications of the laws of thermodynamics in the initial chapters, while the later chapters focus at length on important areas of study falling under the realm of chemical thermodynamics. The reader is thus introduced to a thorough analysis of the fundamental laws of thermodynamics as well as their applications to practical situations. This is followed by a detailed discussion on relationships among thermodynamic properties and an exhaustive treatment on the thermodynamic properties of solutions. The role of phase equilibrium thermodynamics in design, analysis, and operation of chemical separation methods is also deftly dealt with. Finally, the chemical reaction equilibria are skillfully explained. Besides numerous illustrations, the book contains over 200 worked examples, over 400 exercise problems (all with answers) and several objective-type questions, which enable students to gain an in-depth understanding of the concepts and theory discussed. The book will also be a useful text for students pursuing courses in chemical engineering-related branches such as polymer engineering, petroleum engineering, and safety and environmental engineering. New to This Edition • More Example Problems and Exercise Questions in each chapter • Updated section on Vapour–Liquid Equilibrium in Chapter 8 to highlight the significance of equations of state approach • GATE Questions up to 2012 with answers
Cryogenics, a term commonly used to refer to very low temperatures, had its beginning in the latter half of the last century when man learned, for the first time, how to cool objects to a temperature lower than had ever existed na tu rally on the face of the earth. The air we breathe was first liquefied in 1883 by a Polish scientist named Olszewski. Ten years later he and a British scientist, Sir James Dewar, liquefied hydrogen. Helium, the last of the so-caBed permanent gases, was finally liquefied by the Dutch physicist Kamerlingh Onnes in 1908. Thus, by the beginning of the twentieth century the door had been opened to astrange new world of experimentation in which aB substances, except liquid helium, are solids and where the absolute temperature is only a few microdegrees away. However, the point on the temperature scale at which refrigeration in the ordinary sense of the term ends and cryogenics begins has ne ver been weB defined. Most workers in the field have chosen to restrict cryogenics to a tem perature range below -150°C (123 K). This is a reasonable dividing line since the normal boiling points of the more permanent gases, such as helium, hydrogen, neon, nitrogen, oxygen, and air, lie below this temperature, while the more common refrigerants have boiling points that are above this temperature. Cryogenic engineering is concerned with the design and development of low-temperature systems and components.