Download Free Mitochondrial Regulation Book in PDF and EPUB Free Download. You can read online Mitochondrial Regulation and write the review.

This fully updated edition explores the different pathways that converge into the regulation of mitochondrial function. The book integrates mitochondria with other cellular components, discussing the dynamic properties of mitochondria with an emphasis on how these processes respond to signaling events and how they affect cellular metabolism. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Mitochondrial Regulation: Methods and Protocols, Second Edition is an ideal guide for advanced undergraduates, graduates, postgraduates, and beginning researchers in the areas of molecular and cellular biology, biochemistry, and bioenergetics.
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
Mitochondrial replacement techniques (MRTs) are designed to prevent the transmission of mitochondrial DNA (mtDNA) diseases from mother to child. While MRTs, if effective, could satisfy a desire of women seeking to have a genetically related child without the risk of passing on mtDNA disease, the technique raises significant ethical and social issues. It would create offspring who have genetic material from two women, something never sanctioned in humans, and would create mitochondrial changes that could be heritable (in female offspring), and therefore passed on in perpetuity. The manipulation would be performed on eggs or embryos, would affect every cell of the resulting individual, and once carried out this genetic manipulation is not reversible. Mitochondrial Replacement Techniques considers the implications of manipulating mitochondrial content both in children born to women as a result of participating in these studies and in descendants of any female offspring. This study examines the ethical and social issues related to MRTs, outlines principles that would provide a framework and foundation for oversight of MRTs, and develops recommendations to inform the Food and Drug Administration's consideration of investigational new drug applications.
Nearly a century of scientific research has revealed that mitochondrial dysfunction is one of the most common and consistent phenotypes of cancer cells. A number of notable differences in the mitochondria of normal and cancer cells have been described. These include differences in mitochondrial metabolic activity, molecular composition of mitochondria and mtDNA sequence, as well as in alteration of nuclear genes encoding mitochondrial proteins. This book, Mitochondria and Cancer, edited by Keshav K. Singh and Leslie C. Costello, presents thorough analyses of mitochondrial dysfunction as one of the hallmarks of cancer, discusses the clinical implications of mitochondrial defects in cancer, and as unique cellular targets for novel and selective anti-cancer therapy.
Methods in Toxicology, Volume 2: Mitochondrial Dysfunction provides a source of methods, techniques, and experimental approaches for studying the role of abnormal mitochondrial function in cell injury. The book discusses the methods for the preparation and basic functional assessment of mitochondria from liver, kidney, muscle, and brain; the methods for assessing mitochondrial dysfunction in vivo and in intact organs; and the structural aspects of mitochondrial dysfunction are addressed. The text also describes chemical detoxification and metabolism as well as specific metabolic reactions that are especially important targets or indicators of damage. The methods for measurement of alterations in fatty acid and phospholipid metabolism and for the analysis and manipulation of oxidative injury and antioxidant systems are also considered. The book further tackles additional methods on mitochondrial energetics and transport processes; approaches for assessing impaired function of mitochondria; and genetic and developmental aspects of mitochondrial disease and toxicology. The text also looks into mitochondrial DNA synthesis, covalent binding to mitochondrial DNA, DNA repair, and mitochondrial dysfunction in the context of developing individuals and cellular differentiation. Microbiologists, toxicologists, biochemists, and molecular pharmacologists will find the book invaluable.
Mitochondria are subcellular organelles evolved by the endosymbiosis of bacteria with eukaryotic cells. They are the main source of ATP in the cell and engaged in other aspects of cell metabolism and cell function, including the regulation of ion homeostasis, cell growth, redox status, and cell signaling. Due to their central role in cell life and death, mitochondria are also involved in the pathogenesis and progression of human diseases/conditions, including neurodegenerative and cardiovascular disorders, cancer, diabetes, inflammation, and aging. However, despite the increasing number of studies, precise mechanisms whereby mitochondria are involved in the regulation of basic physiological functions, as well as their role in the cell under pathophysiological conditions, remain unknown. A lack of in-depth knowledge of the regulatory mechanisms of mitochondrial metabolism and function, as well as interplay between the factors that transform the organelle from its role in pro-survival to pro-death, have hindered the development of new mitochondria-targeted pharmacological and conditional approaches for the treatment of human diseases. This book highlights the latest achievements in elucidating the role of mitochondria under physiological conditions, in various cell/animal models of human diseases, and in patients.
The book describes molecular principles and mechanisms by which mitochondrial DNA (mtDNA) can drive the occurrence of diseases and the latest understanding of mtDNA biology. The book explores roles of mtDNA mutation and genetic changes in cancer, with a special focus on lung cancer, and the significance of approach, application, and bioethics of mtDNA sequencing. Authors made a great effort to overview roles of mtDNA signaling pathways, base excision repair, methylation, USP30-mediated regulation, mitochondrial ribosome, autophagy pathways, or ROS-dependent signaling in the pathogenesis, diagnosis, prevention and treatment of diseases. It also demonstrates the importance of basic mitochondrial genetics and the relationship between mutations and disease phenotypes and ageing. This book covers not only the basic information of mtDNA, the relationship of mtDNA and disease, but also mtDNA in stem cell and mitochondria and metabolism etc. The book is written for biological and clinical students and researchers in the field of mtDNA–associated diseases.
This volume contains a unique selection of chapters covering a wealth of contemporary topics in this ubiquitous and diverse system of cell signaling. It offers much more than the accessibility and authority of a primary text book, exploring topics ranging from the fundamental aspects of calcium signaling to its varied clinical implications. It presents comprehensive discussion of cutting-edge research alongside detailed analysis of critical issues, at the same time as setting out testable hypotheses that point the way to future scientific endeavors. The contributions feature material on theoretical and methodological topics as well as related subjects including mathematical modeling and simulations. They examine calcium signaling in a host of contexts, from mammalian cells to bacteria, fruit fly and zebrafish. With much of interest to newcomers to the field as well as seasoned experts, this new publication is both wide-ranging and authoritative. The chapter “Calcium Signaling: From Basic to Bedside” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.