Download Free Mitochondrial Genome Evolution Book in PDF and EPUB Free Download. You can read online Mitochondrial Genome Evolution and write the review.

Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology. This thematic volume features reviews on Mitochondrial genome evolution. Publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology This thematic volume features reviews on mitochondrial genome evolution
The Human Mitochondrial Genome: From Basic Biology to Disease offers a comprehensive, up-to-date examination of human mitochondrial genomics, connecting basic research to translational medicine across a range of disease types. Here, international experts discuss the essential biology of human mitochondrial DNA (mtDNA), including its maintenance, repair, segregation, and heredity. Furthermore, mtDNA evolution and exploitation, mutations, methods, and models for functional studies of mtDNA are dealt with. Disease discussion is accompanied by approaches for treatment strategies, with disease areas discussed including cancer, neurodegenerative, age-related, mtDNA depletion, deletion, and point mutation diseases. Nucleosides supplementation, mitoTALENs, and mitoZNF nucleases are among the therapeutic approaches examined in-depth. With increasing funding for mtDNA studies, many clinicians and clinician scientists are turning their attention to mtDNA disease association. This book provides the tools and background knowledge required to perform new, impactful research in this exciting space, from distinguishing a haplogroup-defining variant or disease-related mutation to exploring emerging therapeutic pathways. - Fully examines recent advances and technological innovations in the field, enabling new mtDNA studies, variant and mutation identification, pathogenic assessment, and therapies - Disease discussion accompanied by diagnostic and therapeutic strategies currently implemented clinically - Outlines and discusses essential research protocols and perspectives for young scientists to pick up - Features an international team of authoritative contributors from basic biologists to clinician-scientists
This long-awaited second edition covers the major changes that have occurred in the field over the last decade Completely revised with the most up-to-date research and including brand new chapters, Annual Plant Reviews, Volume 50: Plant Mitochondria, 2nd Edition presents the multifaceted roles of mitochondria in plants. The book starts with a short history of plant mitochondrial research; discusses how coevolution shaped plant mitochondrial gene expression; explains control of number, shape, size, and motility of mitochondria; delves into stress responses and roles in stress alleviation in mitochondrial biochemistry; covers the damage repair pathway of the Calvin-Benson cycle; and more. Containing sections written by many of the world’s leading researchers in this area, this book brings together and reviews for the first time many recent advances. It offers chapters on: Bioblasts, Cytomikrosomen & Chondriosomes; The Crosstalk Between Genomes; The Dynamic Chondriome; Metal Homeostasis in Plant Mitochondria; RNA Metabolism and Transcript Regulation; Mitochondrial Regulation and Signalling in the Photosynthetic Cell; Mitochondrial Biochemistry; Ecophysiology of Plant Respiration; Photorespiration; and Mitochondria and Cell Death. Annual Plant Reviews, Volume 50: Plant Mitochondria, 2nd Edition is an extremely important and timely book that will be of great use and interest to plant scientists, cell and molecular biologists, and biochemists.
Although debated since the time of Darwin, the evolutionary role of mutation is still controversial. In over 40 chapters from leading authorities in mutation and evolutionary biology, this book takes a new look at both the theoretical and experimental measurement and significance of new mutation. Deleterious, nearly neutral, beneficial, and polygenic mutations are considered in their effects on fitness, life history traits, and the composition of the gene pool. Mutation is a phenomenon that draws attention from many different disciplines. Thus, the extensive reviews of the literature will be valuable both to established researchers and to those just beginning to study this field. Through up-to-date reviews, the authors provide an insightful overview of each topic and then share their newest ideas and explore controversial aspects of mutation and the evolutionary process. From topics like gonadal mosaicism and mutation clusters to adaptive mutagenesis, mutation in cell organelles, and the level and distribution of DNA molecular changes, the foundation is set for continuing the debate about the role of mutation, fitness, and adaptability. It is a debate that will have profound consequences for our understanding of evolution.
Mitochondrial DNA is one of the most closely explored genetic systems, because it can tell us so much about the human past. This book takes a unique perspective, presenting the disparate strands that must be tied together to exploit this system. From molecular biology to anthropology, statistics to ancient DNA, this first volume of three presents a comprehensive global picture and a critical appraisal of human mitochondrial DNA variation.
This novel text provides a concise synthesis of how the interactions between mitochondrial and nuclear genes have played a major role in shaping the ecology and evolution of eukaryotes. The foundation for this new focus on mitonuclear interactions originated from research in biochemistry and cell biology laboratories, although the broader ecological and evolutionary implications have yet to be fully explored. The imperative for mitonuclear coadaptation is proposed to be a major selective force in the evolution of sexual reproduction and two mating types in eukaryotes, in the formation of species, in the evolution of ornaments and sexual selection, in the process of adaptation, and in the evolution of senescence. The book highlights the importance of mitonuclear coadaptation to the evolution of complex life and champions mitonuclear ecology as an important subdiscipline in ecology and evolution.
In this timely new 2-volume treatise, experts from around the world have banded together to produce a first-of-its-kind synopsis of the exciting and fast moving field of plant evolutionary genomics. In Volume I of Plant Genome Diversity, an update is provided on what we have learned from plant genome sequencing projects. This is followed by more focused chapters on the various genomic “residents” of plant genomes, including transposable elements, centromeres, small RNAs, and the evolutionary dynamics of genes and non-coding sequences. Attention is drawn to advances in our understanding of plant mitochondrial and plastid genomes, as well as the significance of duplication in genic evolution and the non-independent evolution among sequences in plant genomes. Finally, Volume I provides an introduction to the vibrant new frontier of plant epigenomics, describing the current state of our knowledge and the evolutionary implications of the epigenomic landscape.
A comprehensive account of genomic rearrangement, focusing on the mechanisms of inversion, translocation, gene and genome duplication and gene transfer and on the patterns that result from them in comparative maps. Includes analyses of genomic sequences in organelles, prokaryotes and eukaryotes as well as comparative maps of the nuclear genomes in higher plants and animals. The book showcases a variety of algorithmic and statistical approaches to rearrangement and map data.
Mitochondria in plants, as in other eukaryotes, play an essential role in the cell as the major producers of ATP via oxidative phosphorylation. However, mitochondria also play crucial roles in many other aspects of plant development and performance, and possess an array of unique properties which allow them to interact with the specialized features of plant cell metabolism. The two main themes running through the book are the interconnection between gene regulation and protein function, and the integration of mitochondria with other components of plant cells. The book begins with an overview of the dynamics of mitochondrial structure, morphology and inheritance. It then discusses the biogenesis of mitochondria, the regulation of gene expression, the mitochondrial genome and its interaction with the nucleus, and the targeting of proteins to the organelle. This is followed by a discussion of the contributions that mutations, involving mitochondrial proteins, have made to our understanding of the way the organelle interacts with the rest of the plant cell, and the new field of proteomics and the discovery of new functions. Also covered are the pathways of electron transport, with special attention to the non-phosphorylating bypasses, metabolite transport, and specialized mitochondrial metabolism. In the end, the impact of oxidative stress on mitochondria and the defense mechanisms, that are employed to allow survival, are discussed. This book is for the use of advanced undergraduates, graduates, postgraduates, and beginning researchers in the areas of molecular and cellular biology, integrative biology, biochemistry, bioenergetics, proteomics and plant and agricultural sciences.