Download Free Minimax And Applications Book in PDF and EPUB Free Download. You can read online Minimax And Applications and write the review.

Techniques and principles of minimax theory play a key role in many areas of research, including game theory, optimization, and computational complexity. In general, a minimax problem can be formulated as min max f(x, y) (1) ",EX !lEY where f(x, y) is a function defined on the product of X and Y spaces. There are two basic issues regarding minimax problems: The first issue concerns the establishment of sufficient and necessary conditions for equality minmaxf(x,y) = maxminf(x,y). (2) "'EX !lEY !lEY "'EX The classical minimax theorem of von Neumann is a result of this type. Duality theory in linear and convex quadratic programming interprets minimax theory in a different way. The second issue concerns the establishment of sufficient and necessary conditions for values of the variables x and y that achieve the global minimax function value f(x*, y*) = minmaxf(x, y). (3) "'EX !lEY There are two developments in minimax theory that we would like to mention.
Many boundary value problems are equivalent to Au=O (1) where A : X --+ Y is a mapping between two Banach spaces. When the problem is variational, there exists a differentiable functional rand inf.
The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.
The present volume contains the proceedings of the workshop on "Minimax Theory and Applications" that was held during the week 30 September - 6 October 1996 at the "G. Stampacchia" International School of Mathematics of the "E. Majorana" Centre for Scientific Cul ture in Erice (Italy) . The main theme of the workshop was minimax theory in its most classical meaning. That is to say, given a real-valued function f on a product space X x Y , one tries to find conditions that ensure the validity of the equality sup inf f(x,y) = inf sup f(x, y). yEY xEX xEX yEY This is not an appropriate place to enter into the technical details of the proofs of minimax theorems, or into the history of the contribu tions to the solution of this basic problem in the last 7 decades. But we do want to stress its intrinsic interest and point out that, in spite of its extremely simple formulation, it conceals a great wealth of ideas. This is clearly shown by the large variety of methods and tools that have been used to study it. The applications of minimax theory are also extremely interesting. In fact, the need for the ability to "switch quantifiers" arises in a seemingly boundless range of different situations. So, the good quality of a minimax theorem can also be judged by its applicability. We hope that this volume will offer a rather complete account of the state of the art of the subject.
This volume contains both survey and creative papers dealing with Morse theory, minimax theory, iteration theory of Maslov-type index and critical minimization problems. The book particularly emphasizes applications to nonlinear differential equations.
The present book is the first ever published in which a new type of eigenvalue problem is studied, one that is very useful for applications: eigenvalue problems related to hemivariational inequalities, i.e. involving nonsmooth, nonconvex, energy functions. New existence, multiplicity and perturbation results are proved using three different approaches: minimization, minimax methods and (sub)critical point theory. Nonresonant and resonant cases are studied both for static and dynamic problems and several new qualitative properties of the hemivariational inequalities are obtained. Both simple and double eigenvalue problems are studied, as well as those constrained on the sphere and those which are unconstrained. The book is self-contained, is written with the utmost possible clarity and contains highly original results. Applications concerning new stability results for beams, plates and shells with adhesive supports, etc. illustrate the theory. Audience: applied and pure mathematicians, civil, aeronautical and mechanical engineers.
iPositive Give a man a fish, he eats for a day, but if you teach him to fish, you feed him for life. Such is the approach of iPositive. One day at the gym doesnt make a person fit for life; its a consistent dedication to getting the body in shape that eventually yields results. The lessons in iPositive work in much the same way: They challenge the reader to work to keep the mind in shape. The book is a powerful guide to personal happiness through positivity. Its concepts provide empowerment to overcome self-doubt, disbelief and inferiority complexes in order to transcend the negativity in life. iPositive is geared toward helping individuals become more focused on the things they most want in life, like happiness, love and success, or banish anchors that may be weighting them down, like stress, smoking or excess weight. The book gives readers the practical means to become more focused on those things they want in life, and serves as an inspirational manual for a life of fulfillment, and strength in body, mind and spirit.
A number of different problems of interest to the operational researcher and the mathematical economist - for example, certain problems of optimization on graphs and networks, of machine-scheduling, of convex analysis and of approx imation theory - can be formulated in a convenient way using the algebraic structure (R,$,@) where we may think of R as the (extended) real-number system with the binary combining operations x$y, x®y defined to be max(x,y),(x+y) respectively. The use of this algebraic structure gives these problems the character of problems of linear algebra, or linear operator theory. This fact hB.s been independently discovered by a number of people working in various fields and in different notations, and the starting-point for the present Lecture Notes was the writer's persuasion that the time had arrived to present a unified account of the algebra of linear transformations of spaces of n-tuples over (R,$,®),to demonstrate its relevance to operational research and to give solutions to the standard linear-algebraic problems which arise - e.g. the solution of linear equations exactly or approximately, the eigenvector eigenvalue problem andso on.Some of this material contains results of hitherto unpublished research carried out by the writer during the years 1970-1977.
Game Theory and Experimental Games: The Study of Strategic Interaction focuses on the development of game theory, taking into consideration empirical research, theoretical formulations, and research procedures involved. The book proceeds with a discussion on the theory of one-person games. The individual decision that a player makes in these kinds of games is noted as influential as to the outcome of these games. This discussion is followed by a presentation of pure coordination games and minimal situation. The ability of players to anticipate the choices of others to achieve a mutually beneficial outcome is emphasized. A favorable social situation is also influential in these kinds of games. The text moves forward by presenting studies on various kinds of competitive games. The research studies presented are coupled with empirical evidence and discussion designed to support the claims that are pointed out. The book also discusses several kinds of approaches in the study of games. Voting as a way to resolve multi-person games is also emphasized, including voting procedures, the preferences of voters, and voting strategies. The book is a valuable source of data for readers and scholars who are interested in the exploration of game theories.
The aim of the present book is the formulation, mathematical study and numerical treatment of static and dynamic problems in mechanics and engineering sciences involving nonconvex and nonsmooth energy functions, or nonmonotone and multivalued stress-strain laws. Such problems lead to a new type of variational forms, the hemivariational inequalities, which also lead to multivalued differential or integral equations. Innovative numerical methods are presented for the treament of realistic engineering problems. This book is the first to deal with variational theory of engineering problems involving nonmonotone multivalue realations, their mechanical foundation, their mathematical study (existence and certain approximation results) and the corresponding eigenvalue and optimal control problems. All the numerical applications give innovative answers to as yet unsolved or partially solved engineering problems, e.g. the adhesive contact in cracks, the delamination problem, the sawtooth stress-strain laws in composites, the shear connectors in composite beams, the semirigid connections in steel structures, the adhesive grasping in robotics, etc. The book closes with the consideration of hemivariational inequalities for fractal type geometries and with the neural network approach to the numerical treatment of hemivariational inequalities.