Download Free Miniaturization And Mass Spectrometry Book in PDF and EPUB Free Download. You can read online Miniaturization And Mass Spectrometry and write the review.

The recent explosion in the use of analytical chemistry, particularly in the biological sciences, has led to a need for fast, reliable and highly sensitive tools able to handle small sample sizes. This book illustrates how microfluidics and lab-on-a-chip devices can satisfy the growing need for miniaturized and enhanced analysis. They lend themselves well to mass spectrometric detection as they use samples in the low microlitre range and are handled on a chip. Miniaturization and Mass Spectrometry focuses on one particular technique, mass spectrometry, whose popularity has increased dramatically in the last two decades with the increase in use of biological analysis and the development of two "soft" ionization techniques, ESI and MALDI. These enable the analysis of large but fragile biological molecules such as DNA, proteins and oligosaccharides. The book starts with an introduction to the coupling of microfluidics to mass spectrometry techniques. It then goes on demonstrate the advantages of such a coupling: the MS analysis benefits from improved sample preparation when performed on a chip while MS yields more information on the sample handled on the chip compared to conventional optical detection. A history on the developments in this field, starting from the off-chip coupling to the on-chip ionization, is also provided. Daniel Figeys, a pioneer in the development of microfluidic systems for MS analysis, describes the early beginnings of this hyphenated analysis technique. Solutions to couple microfluidic systems to the two most popular ionization methods, ESI and MALDI, are presented throughout the chapters. Various examples are given of the application of this microfluidics-MS hyphenated analysis technique to proteomics, metabolomics, organic chemistry and forensics. Coverage is not limited to academic research. The development of commercialized systems and their current use for routine biological analysis are also presented. Lastly, a future vision of the integration of the mass spectrometer on the chip is raised, as a last step to yield fully portable systems for on-site analysis.
Focussing on mass spectrometry, this book illustrates how microfluidics and lab-on-a-chip devices satisfy the need for miniaturized, enhanced chemical analysis.
Ambient ionization has emerged as one of the hottest and fastest growing topics in mass spectrometry enabling sample analysis with minimal sample preparation. Introducing the subject and explaining the basic concepts and terminology, this book will provide a comprehensive, unique treatise devoted to the subject. Written by acknowledged experts, there are full descriptions on how new ionization techniques work, with an overview of their strengths, weaknesses and applications. This title will bring the reader right up to date, with both applications and theory, and will be suitable as a tutorial text for those starting in the field from a variety of disciplines.
The most comprehensive resource available on the many applications of portable spectrometers, including material not found in any other published work Portable Spectroscopy and Spectrometry: Volume Two is an authoritative and up-to-date compendium of the diverse applications for portable spectrometers across numerous disciplines. Whereas Volume One focuses on the specific technologies of the portable spectrometers themselves, Volume Two explores the use of portable instruments in wide range of fields, including pharmaceutical development, clinical research, food analysis, forensic science, geology, astrobiology, cultural heritage and archaeology. Volume Two features contributions by a multidisciplinary team of experts with hands-on experience using portable instruments in their respective areas of expertise. Organized both by instrumentation type and by scientific or technical discipline, 21 detailed chapters cover various applications of portable ion mobility spectrometry (IMS), infrared and near-infrared (NIR) spectroscopy, Raman and x-ray fluorescence (XRF) spectroscopy, smartphone spectroscopy, and many others. Filling a significant gap in literature on the subject, the second volume of Portable Spectroscopy and Spectrometry: Features a significant amount of content published for the first time, or not available in existing literature Brings together work by authors with assorted backgrounds and fields of study Discusses the central role of applications in portable instrument development Covers the algorithms, calibrations, and libraries that are of critical importance to successful applications of portable instruments Includes chapters on portable spectroscopy applications in areas such as the military, agriculture and feed, hazardous materials (HazMat), art conservation, and environmental science Portable Spectroscopy and Spectrometry: Volume Two is an indispensable resource for developers of portable instruments in universities, research institutes, instrument companies, civilian and government purchasers, trainers, operators of portable instruments, and educators and students in portable spectroscopy courses.
Here, authors specializing in different branches of chromatography--including gas chromatography, supercritical fluid chromatography, and high-pressure liquid chromatography--describe their fields while drawing out connections with other branches.
Quadrupole Mass Spectrometry and Its Applications provides a comprehensive discussion of quadrupoles and their applications. It proceeds from a general explanation of the action of radiofrequency quadrupole fields to the description of their utilization in mass analyzers—such as the quadrupole mass filter, the monopole, the three-dimensional quadrupole ion trap, and various time-of-flight spectrometers—and finally to the characteristic applications of quadrupoles. A multi-author format has been adopted to provide broader-than-usual viewpoint in the book. The book begins by explaining the principles of operation of quadrupole devices. These include ion trajectories and computer simulations of performance; analytical theory; numerical methods of calculation of performance, including the recently developed application of phase-space dynamics; and fringing fields and other field imperfections. Subsequent chapters provide design and performance evaluations of the mass filter, the monopole, ion traps, and time-of-flight instruments; and describe areas of application where quadrupole devices have made the greatest impact because of their particular advantages and disadvantages.
Due to its enormous sensitivity and ease of use, mass spectrometry has grown into the analytical tool of choice in most industries and areas of research. This unique reference provides an extensive library of methods used in mass spectrometry, covering applications of mass spectrometry in fields as diverse as drug discovery, environmental science, forensic science, clinical analysis, polymers, oil composition, doping, cellular research, semiconductor, ceramics, metals and alloys, and homeland security. The book provides the reader with a protocol for the technique described (including sampling methods) and explains why to use a particular method and not others. Essential for MS specialists working in industrial, environmental, and clinical fields.
Miniaturization is a challenge thrown down to analytical chemistry. The replacement of conventional analytical systems by miniaturized alternatives during the last years is noticeable. Specifically, the miniaturization of traditional sample preparation techniques (e.g., solid-phase extraction or solvent extraction) led to the development of environmentally benign analytical methods. This book aims to provide an overview of the challenges and achievements inthe application of the miniaturized sample preparation methods in analytical laboratories. It includes both theoretical and practical aspects of miniaturized sample preparation approaches and hence should be of interest to researchers, students and teachers of analytical and bioanalytical chemistry, environmental sciences and environmental engineering.
We have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep abreast of the rest of the world in scientific matters. 1 We must maintain our leadership. President Harry Truman spoke those words in 1950, in the aftermath of World War II and in the midst of the Cold War. Indeed, the scientific and engineering leadership of the United States and its allies in the twentieth century played key roles in the successful outcomes of both World War II and the Cold War, sparing the world the twin horrors of fascism and totalitarian communism, and fueling the economic prosperity that followed. Today, as the United States and its allies once again find themselves at war, President Truman’s words ring as true as they did a half-century ago. The goal set out in the Truman Administration of maintaining leadership in science has remained the policy of the U.S. Government to this day: Dr. John Marburger, the Director of the Office of Science and Technology (OSTP) in the Executive Office of the President made remarks to that effect during his confirmation hearings in October 2 2001.
Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized detection systems and micro/nanomachines are also reviewed. Subsequent chapters explore the emerging application of these mobile devices for miniaturized analysis in various fields, including medicine and biomedicine, environmental chemistry, food chemistry, and forensic chemistry. This is an important reference source for materials scientists and engineers wanting to understand how miniaturization techniques are being used to create a range of efficient, sustainable electronic and optical devices. Miniaturization describes the concept of manufacturing increasingly smaller mechanical, optical, and electronic products and devices. These smaller instruments can be used to produce micro- and nanoscale components required for analytical procedures. A variety of micro/nanoscale materials have been synthesized and used in analytical procedures, such as sensing materials, sorbents, adsorbents, catalysts, and reactors. The miniaturization of analytical instruments can be applied to the different steps of analytical procedures, such as sample preparation, analytical separation, and detection, reducing the total cost of manufacturing the instruments and the needed reagents and organic solvents. - Outlines how miniaturization techniques can be used to create new optical and electronic micro- and nanodevices - Explores major application areas, including biomedicine, environmental science and security - Assesses the major challenges of using miniaturization techniques