Download Free Mineral Surface Reactions At The Nanoscale Book in PDF and EPUB Free Download. You can read online Mineral Surface Reactions At The Nanoscale and write the review.

Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.
Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral-aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral-fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.
Elements move through Earth's critical zone along interconnected pathways that are strongly influenced by fluctuations in water and energy. The biogeochemical cycling of elements is inextricably linked to changes in climate and ecological disturbances, both natural and man-made. Biogeochemical Cycles: Ecological Drivers and Environmental Impact examines the influences and effects of biogeochemical elemental cycles in different ecosystems in the critical zone. Volume highlights include: Impact of global change on the biogeochemical functioning of diverse ecosystems Biological drivers of soil, rock, and mineral weathering Natural elemental sources for improving sustainability of ecosystems Links between natural ecosystems and managed agricultural systems Non-carbon elemental cycles affected by climate change Subsystems particularly vulnerable to global change The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Author. Book Review: http://www.elementsmagazine.org/archives/e16_6/e16_6_dep_bookreview.pdf
An evolving, living organic/inorganic covering, soil is in dynamic equilibrium with the atmosphere above, the biosphere within, and the geology below. It acts as an anchor for roots, a purveyor of water and nutrients, a residence for a vast community of microorganisms and animals, a sanitizer of the environment, and a source of raw materials for co
An evolving, living organic/inorganic covering, soil is in dynamic equilibrium with the atmosphere above, the biosphere within, and the geology below. It acts as an anchor for roots, a purveyor of water and nutrients, a residence for a vast community of microorganisms and animals, a sanitizer of the environment, and a source of raw materials for construction and manufacturing. To develop lasting solutions to the challenges of balanced use and stewardship of the Earth, we require a fundamental understanding of soil—from its elastic, porous three-phase system to its components, processes, and reactions. Handbook of Soil Sciences: Resource Management and Environmental Impacts, Second Edition is the second of two volumes that form a comprehensive reference on the discipline of soil science. Completely revised and updated to reflect the current state of knowledge, this volume covers interfacial interactions between the physical, chemical, and biological regimes within the soil; the factors that control the availability of plant nutrients and microelements; interdisciplinary aspects of soil science, including salinity, sodicity, and soil erosion; and soil databases for assessing worldwide soil resources. Critical elements addressed in each section include: Descriptions of concepts and theories Definitions, approaches, methodologies, and procedures Data in tabular and figure format Extensive references This cohesive handbook provides a thorough understanding of soil science principles and practices based on a rigorous, complete, and up-to-date treatment of the subject matter compiled by leading scientists. It is a resource rich in data, offering professional soil scientists, agronomists, engineers, ecologists, biologists, naturalists, and students their first point of entry into a particular aspect of the soil sciences.
Soil harbours a wide range of microorganisms with biotic potentials which can be explored for social benefits. The book Frontiers in Soil and Environmental Microbiology comprises an overview of the complex inter-relationship between beneficial soil microbes and crop plants, and highlights the potential for utilisation to enhance crop productivity, bioremediation and soil health. The book focusses on important areas of research such as biocide production, pesticide degradation and detoxification, microbial decay processes, remediation of soils contaminated with toxic metals, industrial wastes, and hydrocarbon pollutants. Features Presents the state of the art of microbial research in environmental and soil microbiology Discusses an integrated and systematic compilation of microbes in the soil environment and its role in agriculture and plant growth and productivity Elucidates microbial application in environmental remediation Explores advanced genomics topics for uncultivable microbes of soil
An advanced exploration ofwater-rock interactions Based on the author's fifteen years of teaching and tried-and-tested experiences in the classroom, here is a comprehensive exploration of water-rock interactions. Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale covers aspects ranging from the theory of charged particle surfaces to how minerals grow and dissolve to new frontiers in W-R interactions such as nanoparticles, geomicrobiology, and climate change. Providing basic conceptual understanding along with more complex subject matter, Professor Patricia Maurice encourages students to look beyond the text to ongoing research in the field. Designed to engage the learner, the book features: Numerous case studies to contextualize concepts Practice and thought questions at the end of each chapter Broad coverage from basic theory to cutting-edge topics such as nanotechnology Both basic and applied science This text goes beyond W-R interactions to touch on a broad range of environmental disciplines. While written for advanced undergraduate and graduate students primarily in geochemistry and soil chemistry, Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale will serve the needs of such diverse fields as environmental engineering, hydrogeology, physics, biology, and environmental chemistry.
Volume 59 of Reviews in Mineralogy and Geochemistry ties together themes common to environmental microbiology, earth science, and astrobiology. The resesarch presented here, the associated short course, and the volume production were supported by funding from many sources, notably the Mineralogical Society of America, the Geochemical Society, the US Department of Energy Chemical Sciences Program and the NASA Astrobiology Institute.
The field of geoengineering is at a crossroads where the path to high-tech solutions meets the path to expanding applications of geotechnology. In this report, the term "geoengineering" includes all types of engineering that deal with Earth materials, such as geotechnical engineering, geological engineering, hydrological engineering, and Earth-related parts of petroleum engineering and mining engineering. The rapid expansion of nanotechnology, biotechnology, and information technology begs the question of how these new approaches might come to play in developing better solutions for geotechnological problems. This report presents a vision for the future of geotechnology aimed at National Science Foundation (NSF) program managers, the geological and geotechnical engineering community as a whole, and other interested parties, including Congress, federal and state agencies, industry, academia, and other stakeholders in geoengineering research. Some of the ideas may be close to reality whereas others may turn out to be elusive, but they all present possibilities to strive for and potential goals for the future. Geoengineers are poised to expand their roles and lead in finding solutions for modern Earth systems problems, such as global change, emissions-free energy supply, global water supply, and urban systems.
Understanding in detail the ion partitioning in mineralwater interactions is of fundamental importance to geochemical studies and ultimately to society. The solid-solution properties of minerals are a significant part of the complexity, and also the importance, of these ion-partitioning reactions.