Download Free Microwave Processing Of Materials Book in PDF and EPUB Free Download. You can read online Microwave Processing Of Materials and write the review.

Microwaves can be effectively used in the processing of industrial materials under a wide range of conditions. However, microwave processing is complex and multidisciplinary in nature, and a high degree of technical knowledge is needed to determine how, when, and where the technology can be most profitably utilized. This book assesses the potential of microwave technology for industrial applications, reviews the latest equipment and processing methods, and identifies both the gaps in understanding of microwave processing technology and the promising development opportunities that take advantage of this new technology's unique performance characteristics.
Using microwaves to treat metal-based materials is rapidly emerging as an energy-efficient tool to interact with metals for a number of processes such as sintering, melting, brazing, carburizing and annealing. Microwaves can sinter a wide variety of metal compacts with comparable or enhanced end properties, while at the same time delivering tremendous energy savings over conventional sintering. Microwave processes are therefore gaining increasing attention and adoption in both academia and industry. Gupta and Wong have written this comprehensive text to introduce readers to the world of microwaves and the interaction of microwaves with metals and metals-based formulations. The authors have combined numerous research results from a wide range of sources alongside their own work in the field. Also included are overviews of microwave heating of other non-metal materials and the equipment used for microwave-assisted metallurgy. With microwave techniques poised for widespread adoption, Microwaves and Metals is an essential text for all metallurgists and materials engineers. Provides a thorough grounding in microwave fundamentals and their application to metals processing Informs readers of the latest developments in the field Presents a convenient single source for all aspects of microwave processing of metals and materials Contains liberal illustration to compare and benchmark research results Introduces all the necessary equipment, preparing readers for real-world practice Microwaves and Metals is ideal for a post-graduate or advanced undergraduate course in materials science or metallurgy. Materials and metallurgical engineers in industry, who are keen on cheaper, faster techniques, will also benefit from this book.
A complete guide, this book presents industrial microwave heating from an engineering base and integrating the essential elements of microwave theory and heat transfer with practical design, application and operational issues.
The Microwave Processing of Foods, Second Edition, has been updated and extended to include the many developments that have taken place over the past 10 years. Including new chapters on microwave assisted frying, microwave assisted microbial inactivation, microwave assisted disinfestation, this book continues to provide the basic principles for microwave technology, while also presenting current and emerging research trends for future use development. Led by an international team of experts, this book will serve as a practical guide for those interested in applying microwave technology. - Provides thoroughly up-to-date information on the basics of microwaves and microwave heating - Discusses the main factors for the successful application of microwaves and the main problems that may arise - Includes current and potential future applications for real-world application as well as new research and advances - Includes new chapters on microwave-assisted frying, microbial inactivation, and disinfestation
This book is both a course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originates from a branch of materials science and engineering developed in the 1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fields to materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers are shown that the concept of transport phenomena does not only apply to heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrically conductive materials such as electromagnetic levitation, mixing, brake, and etc., which are caused by the Lorentz force. The fifth chapter treats magnetic processing of organic and non-organic materials such as magnetic levitation, crystal orientation, structural alignment and etc., which are induced by the magnetization force. This part is a new academic field named Magneto-Science, which focuses on the development of super-conducting magnets. This book is written so as to be understood by any graduate student in engineering courses but also to be of interest to engineers and researchers in industries.
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book primarily covers recent research, theories, and practices relevant to surface engineering and processing of materials. It focuses on the lesser-known technologies and advanced manufacturing methods which may not be standardized yet but are highly beneficial to material and manufacturing industrial engineers. The book includes current advances in the field of coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies which enhance the performance of materials in terms of corrosion, wear and fatigue. The book can be a valuable reference for beginners, researchers, and professionals interested in materials processing and allied fields.
This book consists of peer-reviewed articles reporting on the latest developments in several food engineering and agricultural processing laboratories at US land-granted universities. The contributors are leading experts in their respective fields.The topics covered in the book include new food processing technologies (such as high voltage electric field processing and microwave sterilization/pasteurization), conversion of agricultural by-products into high quality refined cellulose or biodegradable plastics, and advances in machine vision inspection and sorting techniques for fruit and vegetable packaging lines. Each chapter begins with a general background review with important references, and ends with the latest results from each research laboratory.
Die jüngsten Fortschritte im Bereich der drahtlosen Telekommunikation und dem Internet der Dinge sorgen bei drahtlosen Systemen, beim Satellitenfernsehen und bei intelligenten Transportsystemen der 5. Generation für eine höhere Nachfrage nach dielektrischen Materialien und modernen Fertigungstechniken. Diese Materialien bieten ausgezeichnete elektrische, dielektrische und thermische Eigenschaften und verfügen über enormes Potenzial, vor allem bei der drahtlosen Kommunikation, bei flexibler Elektronik und gedruckter Elektronik. Microwave Materials and Applications erläutert die herkömmlichen Methoden zur Messung der dielektrischen Eigenschaften im Mikrowellenbereich, die verschiedenen Ansätze zur Lösung von Problemen der Materialchemie und von Kristallstrukturen, in den Bereichen Doping, Substitution und Aufbau von Verbundwerkstoffen. Besonderer Schwerpunkt liegt auf Verarbeitungstechniken, Einflüssen der Morphologie und der Anwendung von Materialien in der Mikrowellentechnik. Gleichzeitig werden viele der jüngsten Forschungserkenntnisse bei Mikrowellen-Dielektrika und -Anwendungen zusammengefasst. Die verschiedenen Kapitel untersuchen: Oxidkeramiken für dielektrische Resonatoren und Substrate, HTCC-, LTCC- und ULTCC-Bänder für Substrate, Polymer-Keramik-Verbundstoffe für Leiterplatten, Elastomer-Keramik-Verbundstoffe für flexible Elektronik, dielektrische Tinten, Materialien für die EMV-Abschirmung, Mikrowellen-Ferrite. Ein umfassender Anhang präsentiert die grundlegenden Eigenschaften von mehr als 4000 verlustarmen dielektrischen Keramiken, deren Zusammensetzung, kristalline Struktur und dielektrischen Eigenschaften für Mikrowellenanwendungen. Microwave Materials and Applications wirft einen Blick auf sämtliche Aspekte von Mikrowellenmaterialien und -anwendungen, ein nützliches Handbuch für Wissenschaftler, Unternehmen, Ingenieure und Studenten, die sich mit heutigen und neuen Anwendungen in den Bereichen drahtlose Kommunikation und Unterhaltungselektronik beschäftigen.
This book offers a broad coverage of the theory and practice of industrial microwave heating. It introduces the physical processes behind dipolar and conductivity loss mechanisms and follows with a thorough presentation of dielectric property data of many industrial materials as a function of the moisture content, temperature and frequency, focussing on the interpretation of such data as regards the suitabiliy for processing these materials with microwave energy. The basic equations which govern the power dissipation, attenuation, phase constant, penetration depth and skin depth are derived from first principles while the transport equations of heat, mass and pressure are qualitatively described, giving particular emphasis to the physical mechanisms behind high frequency drying. The book provides established procedures backed by theoretical formulations for the design of industrial travelling wave and multimode applicators. It also provides extensive coverage of single mode fundamental or higher order resonant cavities and outlines a number of atypical applicator structures. It describes the essential features of processing with microwaves under vacuum and presents a brief introduction to the mechanisms which lead to gas breakdown. It stresses the need for a degree of hybridisation with other electrical or conventional heating systems and discusses a few such schemes. The book outlines a number of systems for limiting leakage from on-line industrial microwave systems and concludes with an extensive discussion of successful industrial applications.
The efficient design of microwave food products and associated packaging materials for optimum food quality and safety requires knowledge of product dielectric properties and associated heating mechanisms, careful consideration of product geometry, knowledge of modern packaging and ingredient technologies, and application of computer simulation, statistics and experimental design. Integrated knowledge and efficient application of these tools is essential for those developing food products in this demanding field.Development of packaging and products for use in microwave ovens provides a focused and comprehensive review for developers. Part one discusses the principles of microwave heating and ovens, with an emphasis on the effect of food dielectric properties and geometry on heating uniformity and optimising the flavours and colours of microwave foods. Microwave packaging materials and design are discussed in Part two; chapters cover rigid packaging, susceptors and shielding. Product development, food, packaging and oven safety is the topic of Part three. Computer modelling of microwave products and active packaging is discussed in Part four.Written by a distinguished team of international contributors, Development of packaging and products for use in microwave ovens is a valuable resource for those in the food and packaging industries. - Comprehensively reviews the principles of microwave heating and ovens assessing the effect of food dielectric properties on heating uniformity - Thoroughly reviews microwave packaging materials and design including testing and regulatory issues - Features a seven page section of colour diagrams to show heat distributions