Download Free Microwave Engineering Of Nanomaterials Book in PDF and EPUB Free Download. You can read online Microwave Engineering Of Nanomaterials and write the review.

The use of microwaves has gradually democratized itself in several scientific areas and is now a common methodology in domains as different as chemistry, protein digestion, mining, and metallurgy. Materials chemistry is one field where microwave irradiation technologies are being studied. In recent years, development of nanotechnologies has increas
This book targets new trends in microwave engineering by downscaling components and devices for industrial purposes such as miniaturization and function densification, in association with the new approach of activation by a confined optical remote control. It covers the fundamental groundwork of the structure, property, characterization methods and applications of 1D and 2D nanostructures, along with providing the necessary knowledge on atomic structure, how it relates to the material band-structure and how this in turn leads to the amazing properties of these structures. It thus provides new graduates, PhD students and post-doctorates with a resource equipping them with the knowledge to undertake their research.
For the first time, this comprehensive handbook presents the emerging field of microwave technology for the synthesis of nanoparticles. Divided into three parts--fundamentals, methods, and applications--it covers topics including microwave theory, scale-up, microwave plasma synthesis, characterization, and more. This offers both an important volume for academic researchers, and a resource for those in industry exploring the applications of nanoparticles in semiconductors, electronics, catalysis, sensors, and more.
While nanotechnology has been a booming research field for years, the study of how it can be used alongside water engineering has not been deeply explored. By examining the ways in which nanomaterials can aid hydraulics, these tools can be used for water purification, water treatments, and a vast array of other uses that will make water engineering easier and safer. Advanced Nanomaterials for Water Engineering, Treatment, and Hydraulics is a comprehensive reference source for the latest research-based material on the use of progressive nanotechnologies for water technologies. Featuring coverage on relevant topics such as water purification, nano-metal oxides, chitosan nanoparticles, and contaminated waste water, this is an ideal reference source for engineers, students, academics, and researchers seeking innovative perspectives on the use of nanomaterials in water engineering.
This book covers a wide range of topics that address the main areas of interest to scientists, engineers, and students concerned with the synthesis, characterization and applications of nanomaterials. Development techniques, properties, and examples of industrial applications are all widely represented as they apply to various nanostructured materials including nanocomposites and multilayered nanometric coatings. The book also illustrates a wide range of powerful methods of nanomaterial/nanostructure synthesis such as microwave-assisted methods, pulsed electrodeposition, ion beams, or glancing angle deposition. Techniques for the encapsulation and functionalization of nanoparticles, as well as the adhesion and mechanical characterization of nanostructured thin films, are also described and discussed. It is to be recommended to anyone working in the field of nanomaterials, especially in connection with the functionalization and engineering of surfaces.
The principal aim of this book is to introduce chemists through a tutorial approach to the use of microwaves by examining several experiments of microwave chemistry and materials processing. It will subsequently enable chemists to fashion their own experiments in microwave chemistry or materials processing. Microwave heating has become a popular methodology in introducing thermal energy in chemical reactions and material processing in laboratory-scale experiments. Several research cases where microwave heating has been used in a wide range of fields have been reported, including organic synthesis, polymers, nanomaterials, biomaterials, and ceramic sintering, among others. In most cases, microwave equipment is used as a simple heat source. Therefore the principal benefits of microwave radiation have seldom been taken advantage of. One reason is the necessity to understand the nature of electromagnetism, microwave engineering, and thermodynamics. However, it is difficult for a chemist to appreciate these in a short time, so they act as barriers for the chemist who might take an interest in the use of microwave radiation. This book helps to overcome these barriers by using figures and diagrams instead of equations as much as possible.
Green Sustainable Process for Chemical and Environmental Engineering and Science: Switchable Solvents explores the preparation, properties, chemical processes and applications of this class of green solvents. The book provides an in-depth overview on the area of switchable solvents in various industrial applications, focusing on the purification and extraction of chemical compounds utilizing green chemistry protocols that include liquid-liquid, solid-liquid, liquid-gas and lipids separation technologies. In addition, it includes recent advances in greener extraction and separation processes. This book will be an invaluable guide to students, professors, scientists and R&D industrial specialists working in the field of sustainable chemistry, organic, analytical, chemical engineering, environmental and pharmaceutical sciences. Provides a broad overview of switchable solvents in sustainable chemical processes Compares the use of switchable solvents as greener solvents over conventional solvents Outlines eco-friendly organic synthesis and chemical processes using switchable solvents Lists various industrial separations/extraction processes using switchable solvents
Presents novel, nanotechnology-based solutions for urgent environmental engineering problems Clear and concise from beginning to end, this book focuses on the design and application of artificially intelligent nanomaterials, which help in solving many tangible environmental problems?especially water and air pollution. It lays out the design concepts, major chemical principles, and materials considerations of artificially intelligent nanomaterials for environmental engineering, and provides proof-of-concept examples such as improved filtration membranes, nanofibrous air filters, and molecularly imprinted nanomaterials. Artificially Intelligent Nanomaterials: For Environmental Engineering starts by describing the background of environmental nanotechnology, the rise of Artificial Intelligence (AI), and the current status of AI in environmental engineering. It then looks at: intelligently functional materials and responsive mechanisms; designing filtration membranes with responsive gates; switchable wettability materials for controllable oil/water separation; and self-healing materials for environmental applications. The book continues with chapters that examine: emerging nanofibrous air filters for PM2.5 removal; self-propelled nanomotors for environmental applications; molecular imprinting in wastewater treatment; and emerging synergistically multifunctional and all-in-one nanomaterials and nanodevices in advanced environmental applications. -Presents the state-of-the-art in environmental technology and puts forward bold ideas for its advancement -Addresses global challenges, including all important water and air quality which are critical for human health and a sustainable future -Concentrates on nanotechnology-enabled solutions for pollutant removal from water and air Artificially Intelligent Nanomaterials: For Environmental Engineering is an ideal book for undergraduates, graduates, scientists, and professionals in the fields of environmental science, material science, chemistry, and chemistry engineering.
Magnetic nanocatalysts are becoming an important tool for greener catalytic processes in chemical transformations in view of the ease of their removal from a reaction medium. This book explores assorted magnetic nanocatalysts, their deployment in synthesis, chemical transformation and their recovery and reuse. Various thematic topics embodied include magnetic nanocatalysts for S-S bond formation, N-heterocycle formation, C-heteroatom bond formation, silica-supported catalysts, multicomponent reactions, including their recyclability; another available volume emphasizes the utility of magnetic nanocatalysts in industrial appliances.
Sustainable Nanotechnology for Environmental Remediation provides a single-source solution to researchers working in environmental, wastewater management, biological and composite nanomaterials applications. It addresses the potential environmental risks and uncertainties surrounding the use of nanomaterials for environmental remediation, giving an understanding of their impact on ecological receptors in addition to their potential benefits. Users will find comprehensive information on the application of state-of-the-art processes currently available to synthesize advanced green nanocomposite materials and biogenic nanomaterials. Other sections explore a wide range of promising approaches for green nanotechnologies and nanocomposites preparations. Case study chapters connect materials engineering and technology to the social context for a sustainable environment. Applications and different case studies provide solutions to the challenges faced by industry, thus minimizing negative social impacts. Provides information on the use of biologically mediated synthetic protocols to generate nanomaterials Discusses a wide range of promising?approaches?for?green nanotechnologies and nanocomposites preparations Presents novel fabrication techniques for bionanocomposites, paving the way for the development of a new generation of advanced materials that can cope with spatiotemporal multi-variant environments