Download Free Microwave Assisted Formation Of Magnetic Carbon Nanostructures Book in PDF and EPUB Free Download. You can read online Microwave Assisted Formation Of Magnetic Carbon Nanostructures and write the review.

This book highlights all newly reported carbon nanostructures including graphene and its derivatives, carbon nanotubes, metal organic frameworks, fullerenes, nanorods, nanospheres, nano onions, porous nanoparticles, nanohorns, nanofibers and nanoribbons, nanodiamonds, graphitic carbon nitrides, carbon aerogels and hydrogels, graphdiyne and graphenylene. It presents the historical development of carbon nanostructures technologies, different types and classifications, and different fabrication and functionalization techniques, including outer/inner surface functionalization and covalent and noncovalent functionalization. This Handbook discusses the unique properties of functionalized carbon nanostructures that can be obtained by modifying their structures, composition, and surface. It gives the reader an in-depth look at the current achievements of research and practice while pointing you ahead to new possibilities in functionalizing and using carbon nanomaterials. Finally, it covers the various applications of functionalized carbon nanostructures including adsorbents, additives, active materials in energy accumulating systems (batteries, hydrogen storage systems, and supercapacitors), filtering media, catalysts or supports for catalysts, sensors or substrates for sensors, additives for polymers, ceramic composites, metal and carbon alloys, glasses, digital textiles, and composite materials.
This volume embodies the most recent research on shock compression of condensed matter, and includes 363 plenary, invited and contributed papers on topics including equation of state, phase transitions, chemical reactions, warm dense matter, fracture, geophysics and planetary science, energetic materials, optical studies, materials modeling, and recent experimental developments in the field of shock compression of condensed matter.
The demands for green and sustainable synthetic methods in the fields of healthcare and fine chemicals, combined with the pressure to produce these substances expeditiously and in an environmentally benign fashion, pose significant challenges to the synthetic chemical community. Green chemistry can avoid pollution by utilizing techniques that are environmentally friendly by design and one of the best green techniques is the use of microwave (MW) assisted aqueous synthetic protocols. Fusing MW technique with water (as a benign reaction medium) can offer an extraordinary synergistic effect with greater potential than these two individual components in isolation. Selective microwave heating can be exploited to develop a high yield protocol and the use of water expedites the MW-protocol with more energy efficiency. This book provides an overview of the various processes developed using aqueous microwave chemistry and is written for chemists, chemical engineers and researchers in the early stages who want to develop sustainable and green processes. Written by well known microwave experts, the book is a comprehensive examination of the field and is the first book that deals strictly with aqueous microwave chemistry and represents a significant effort towards green chemistry. It covers all the microwave-assisted aqueous reactions in depth, including heterocycle synthesis, metal catalysis, enzyme catalysis, polymer synthesis, nanomaterials synthesis and nano-catalysis. Each chapter contains representative experimental procedures, helping the reader quickly replicate some of the experiments to gain hands-on experience.
The Carbon Nanomaterials Sourcebook contains extensive, interdisciplinary coverage of carbon nanomaterials, encompassing the full scope of the field—from physics, chemistry, and materials science to molecular biology, engineering, and medicine—in two comprehensive volumes. Written in a tutorial style, this second volume of the sourcebook: Focuses on nanoparticles, nanocapsules, nanofibers, nanoporous structures, and nanocomposites Describes the fundamental properties, growth mechanisms, and processing of each nanomaterial discussed Explores functionalization for electronic, energy, biomedical, and environmental applications Showcases materials with exceptional properties, synthesis methods, large-scale production techniques, and application prospects Provides the tools necessary for understanding current and future technology developments, including important equations, tables, and graphs Each chapter is dedicated to a different type of carbon nanomaterial and addresses three main areas: formation, properties, and applications. This setup allows for quick and easy search, making the Carbon Nanomaterials Sourcebook: Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites a must-have reference for scientists and engineers.
Magnetic nanocatalysts are an important tool for greener catalytic processes due to the ease of their removal from a reaction medium. This book explores different magnetic nanocatalysts, their use in synthesis, and their recyclability. Topics covered include magnetic nanocatalysts for S-S bond formation, N-hetercycle formation, C-heteroatom bond formation, silica-supported catalysts, multicomponent reactions, and their recyclability.
Offering the latest information in magnetic nanoparticle (MNP) research, this book builds upon the success of the first volume and provides an updated and comprehensive review, from synthesis, characterization, and biofunctionalization to clinical applications of MNPs, including the diagnosis and treatment of cancers. The book captures some of emerging research area which was not available in the first volume. Good Manufacturing Practices and Commercialization of MNPs are also included. This volume, also written by some of the most qualified experts in the field, incorporates new developments in the literature, and continues to bridge the gaps between the different areas in this field.
This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight application of 2D materials in biomass conversion catalysis, plasmonic photocatalysis, catalytic demonstration of mesoporosity in the hierarchical zeolite and the effect of surface phase oxides on supported metals and catalysis. Looking to the future a chapter on ab initio machine learning for accelerating catalytic materials discovery is included. Appealing broadly to researchers in academia and industry, these illustrative chapters bridge the gap from academic studies in the laboratory to practical applications in industry not only for catalysis field but also for environmental protection. Other chapters with an industrial perspective include heterogeneous and homogeneous catalytic routes for vinyl acetate synthesis, catalysis for production of jet fuel from renewable sources by HDO/HDC and microwave-assisted catalysis for fuel conversion. Chemical reactions in ball mills is also explored. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.
For the first time, this comprehensive handbook presents the emerging field of microwave technology for the synthesis of nanoparticles. Divided into three parts--fundamentals, methods, and applications--it covers topics including microwave theory, scale-up, microwave plasma synthesis, characterization, and more. This offers both an important volume for academic researchers, and a resource for those in industry exploring the applications of nanoparticles in semiconductors, electronics, catalysis, sensors, and more.
Bio-derived Carbon Nanostructures: Fundamentals, Synthesis and Applications explores the entire journey, from selecting the right source materials to crafting them into precisely engineered carbon nanostructures with a purpose.Opening with an exploration of raw materials and their structural intricacies, offering readers a profound insight into the transformation of bio-based resources into highly functional carbon nanostructures. These remarkable materials find applications that span energy, environmental solutions, catalysis, and innovative additives. Unveiling the latest technological advancements, this book delves into the exciting realm of emerging applications and the challenges of scaling up these technologies for widespread use. These novel materials originate from nature, promising a sustainable future.Ideal for students, researchers and those in industry focusing on materials science and biomass utilization, and chemical engineers, this book is the key to unlocking the potential of novel carbon-based nanomaterials for a sustainable tomorrow. - Presents the art of crafting bio-derived carbon nanostructures, their applications, and scale up issues - Unveils the secrets behind various fabrication techniques and provides background for manufacturing. - Embarks on a journey through the fundamentals of process-property relationships and cutting-edge characterization methods - Explores and compares diverse preparation and characterization techniques, unveiling their remarkable outcomes
A comprehensive overview covering the principles and preparation of catalysts, as well as reactor technology and applications in the field of organic synthesis, energy production, and environmental catalysis. Edited and authored by renowned and experienced scientists, this reference focuses on successful reaction procedures for applications in industry. Topics include catalyst preparation, the treatment of waste water and air, biomass and waste valorisation, hydrogen production, oil refining as well as organic synthesis in the presence of heterogeneous and homogeneous catalysts and continuous-flow reactions. With its practical relevance and successful methodologies, this is a valuable guide for chemists at universities working in the field of catalysis, organic synthesis, pharmaceutical or green chemistry, as well as researchers and engineers in the chemical industry.