Download Free Microwave And Millimeter Wave Beam Steering Shaping Phased Antenna Arrays And Related Applications Book in PDF and EPUB Free Download. You can read online Microwave And Millimeter Wave Beam Steering Shaping Phased Antenna Arrays And Related Applications and write the review.

This book explains one of the hottest topics in wireless and electronic devices community, namely the wireless communication at mmWave frequencies, especially at the 60 GHz ISM band. It provides the reader with knowledge and techniques for mmWave antenna design, evaluation, antenna and chip packaging. Addresses practical engineering issues such as RF material evaluation and selection, antenna and packaging requirements, manufacturing tolerances, antenna and system interconnections, and antenna One of the first books to discuss the emerging research and application areas, particularly chip packages with integrated antennas, wafer scale mmWave phased arrays and imaging Contains a good number of case studies to aid understanding Provides the antenna and packaging technologies for the latest and emerging applications with the emphases on antenna integrations for practical applications such as wireless USB, wireless video, phase array, automobile collision avoidance radar, and imaging
Recently, there has been a rapid development of phased antenna array (PAA) systems based on low cost MMICs (monolithic microwave integrated circuits). Wideband technology has attracted considerable attention because of its high data-rate transmission capability. An investigation into novel wide band CMOS-based microwave and millimeter wave technologies has been performed in order to develop high performance phased array antenna based transmitter systems for applications including Microwave Imaging Reflectometry (MIR) systems for high temperature plasma diagnostics. This dissertation presents the design and characterization of the individual building blocks for a Ka-Band (26.5 - 40 GHz) PAA system, which includes a wideband feedback amplifier using the 0.18 [mu]m CMOS process, and a true time delay wideband Rotman lens integrated with a wideband antipodal Vivaldi antenna array on PCB. A frequency controlled feedback with parasitic cancellation technique has been employed in the amplifier design to overcome the inherent 0.18 [mu]m CMOS process limitations, thereby boosting the high-frequency response. In addition, a gain response superposition concept has been adopted to obtain a flat gain response with a compact size. This amplifier achieves a peak gain of 23.3 dB at 35.6 GHz, and maintains >16 dB gain over the entire Ka-Band. The output saturation power is 10.1 dBm. An 11-in, 9-out microstrip Rotman Lens with 30° steering angle (6° step) has been designed and implemented. A novel analytical modeling in Matlab enables fast prototyping. EM simulation has been carried out in CST afterwards. To ensure wideband operation, an antipodal Vivaldi antenna array with unbalanced microstrip line feed has been designed and integrated with the Rotman Lens. In the end, the wideband steering has been successfully demonstrated during the measurement. The analytical and experimental results of the above designs provide guidance toward the development of a new PAA system for future use in MIR systems with significantly enhanced performance.
As the demand for higher data rates increases, wireless technologies (e.g., satellite communications, fifth Generation (5G) wireless communications, and automotive radars) are migrating toward millimeter-wave (mm-W) frequencies (30-300 GHz) to utilize the numerous unused spectra available over this frequency band. For truly ubiquitous coverage over the globe, high throughput Ka-band satellite communication (SATCOM) offers the most optimal and a unique solution for providing world-wide information and sensing. Of particular interest is the development of land, or close-to-land, mobile systems for high data rate communications with continuous coverage for on-the-move commercial platforms, including cars, airplanes, ships, and trains. A modular and scalable phased-array antenna (PAA) architecture wherein the entire phased-array system is made of identical sub-array modules (building blocks) is the most promising approach to develop cost effective and flexible systems for mass market applications. Obviously, such architecture depends on the availability of a high-performance antenna element, antenna subarray modules, and beam-forming circuits. These are the main topics investigated in this PhD thesis. Two approaches were extensively studied in this PhD research to develop intelligent steerable antenna array modules as building blocks for large-scale Ka-band SATCOM applications. The first approach targeted the development of a working prototype for a wide-angle beam-steering Ka-band active PAA (APAA). In this approach, two APAA architectures were proposed, designed, fabricated, and measured to validate the proposed concepts. Both approaches exhibit wide beam-steering angles and fast beam-forming capabilities with full control on amplitude and phase of each antenna element by utilizing an intelligent beam-forming circuit that was developed at CIARS (Centre for Intelligent Antenna and Radio Systems). The first architecture comprises a novel single-fed CP antenna element integrated with the intelligent beam-forming circuit, to construct a wide beam-steering and low-cost CP-APAA. A 4×16 CP-APAA was designed and fabricated using low-cost printed circuit board (PCB) technology and it was tested over the frequency range (29.5-30 GHz) over an angular range of 0o-±40o. The second architecture utilized a highly integrated and wide band dually-polarized antenna element as a core component for the realization of a high-performance, compact, and polarization-agile Ka-band APAA module. The proposed antenna module was used to construct a proof-of-concept 16×16 modular APAA to radiate a high polarization purity pattern over a wide beam-steering angles ≥70o. The second proposed approach investigated two novel wideband and passive steerable antenna concepts as attractive low-cost alternatives suitable for a wide range of emerging mm-W communication systems. Such antenna systems are made of passive components, antennas, phase shifters, and passive feeding networks to reduce the power consumption, cost, and complexity of conventional active electronically steered arrays. In order to build such systems, a high-performance antenna and passive phase shifter (invented at CIARS) were integrated to eliminate the necessity for costly variable gain amplifiers (VGAs). The first proposed concept is a novel CP passive PAA comprised of the proposed single-fed CP antenna integrated with the CIARS phase shifter. The novel high-performance passive phase shifter was controlled by a low-profile and low-power consumption novel magnetic actuator to overcome the limitation of state-of-the-art passive phased arrays. The proposed CP passive PAA was designed, fabricated and tested at Ka-band (29.5-30.5 GHz) over an angular range of 0o-±38o. The second concept proposed here is a novel reconfigurable reflectarray antenna (RAA) element with a true-time-delay functionality. Its reconfigurability is realized by utilizing the proposed phase shifter integrated with an aperture-coupled microstrip patch antenna (ACMPA) to receive and re-radiate the electromagnetic energy efficiently. The proposed RAA element was designed and tested at Ka-band (27.5-30 GHz).
Phased arrays, while traditionally used in radar systems, are now being used or proposed for use in internet of things (IoT) networks, high-speed back haul communication, terabit-per-second satellite systems, 5G mobile networks, and mobile phones. This book considers systems engineering of phased arrays and addresses not only radar, but also these modern applications. It presents a system-level perspective and approach that is essential for the successful development of modern phased arrays. Using practical examples, this book helps solve problems often encountered by technical professionals. Thermal management challenges, antenna element design issues, and architectures solutions are explored as well as the benefits and challenges of digital beam forming. This book provides the information required to train engineers to design and develop phased arrays and contains questions at the end of each chapter that professors will find useful for instruction.
The book provides a comprehensive overview of antennas for 5G technology, such as MIMO, multiband antennas, Magneto-Electric Dipole Antenna and PIFA Antenna for 5G networks, phased array antennas for 5G access, beam-forming and beam-steering issues, 5G antennas for specific applications (smartphone, cognitive radio) and advance antenna concept and materials for 5G. The book also covers ooptimizations methods for passive and active devices in mm-Wave 5G networks. It explores topics which influence the design and characterization of antennas such as data rates, high isolation, pattern and spatial diversity, making 5G antennas more suitable for a multipath environment. The book represents a learning tool for researchers in the field, and enables engineers, designers and manufacturers to identify key design challenges of antennas for 5G networks, and characterize novel antennas for 5G networks.
Microwave and millimeter-wave (mm-wave) circuits and systems have been widely employed in various emerging technologies such as 5G and beyond wireless mobile communication systems, autonomous driving, electronic warfare, and radar systems. To better understand the benefits, challenges, and opportunities of this technology, further study is required. The Handbook of Research on Emerging Designs and Applications for Microwave and Millimeter Wave Circuits describes the latest advances in microwave and mm-wave applications and provides state-of-the-art research in the domain of microwave, mm-wave, and THz devices and systems. Covering key topics such as antennas, circuits, propagation, and energy harvesting, this major reference work is ideal for computer scientists, industry professionals, researchers, academicians, practitioners, scholars, instructors, and students.
Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems The first and only comprehensive text on substrate-integrated mmW antenna technology, state-of-the-art antenna design, and emerging wireless applications Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems elaborates the most important topics related to revolutionary millimeter-wave (mmW) technology. Following a clear description of fundamental concepts including substrate-integrated waveguides and loss analysis, the text treats key design methods, prototyping techniques, and experimental setup and testing. The authors also highlight applications of mmW antennas in 5G wireless communication and next-generation radar systems. Readers are prepared to put techniques into practice through practical discussions of how to set up testing for impedance matching, radiation patterns, gain from 24GHz up to 325 GHz, and more. This book will bring readers state-of-the-art designs and recent progress in substrate-integrated mmW antennas for emerging wireless applications. Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems is the first comprehensive text on the topic, allowing readers to quickly master mmW technology. This book: Introduces basic concepts such as metamaterials Huygens's surface, zero-index structures, and pattern synthesis Describes prototyping in the form of fabrication based on printed-circuit-board, low-temperature-co-fired-ceramic and micromachining Explores applications for next-generation radar and imaging systems such as 24-GHz and 77-GHz vehicular radar systems Elaborates design methods including waveguide-based feeding network, three-dimensional feeding structure, dielectric loaded aperture antenna element, and low-sidelobe synthesis The mmW is one of today’s most important emerging technologies. This book provides graduate students, researchers, and engineers with the knowledge they need to deploy mmW systems and develop new antenna designs with low cost, low loss, and low complexity.
This dissertation introduces new technologies and techniques for low-cost phased arrays and scanning antennas. Special emphasis is placed on new approaches for low-cost millimeter-wave beam control. Several topics are covered. A novel reconfigurable grating antenna is presented for low-cost millimeter-wave beam steering. The versatility of the approach is proven by adapting the design to dual-beam and circular-polarized operation. In addition, a simple and accurate procedure is developed for analyzing these antennas. Designs are presented for low-cost microwave/millimeter-wave phased-array transceivers with extremely broad bandwidth. The target applications for these systems are mobile satellite communications and ultra-wideband radar. Monolithic PIN diodes are a useful technology, especially suited for building miniaturized control components in microwave and millimeter-wave phased arrays. This dissertation demonstrates a new strategy for extracting bias-dependent small-signal models for monolithic PIN diodes. The space solar-power satellite (SPS) is a visionary plan that involves beaming electrical power from outer space to the earth using a high-power microwave beam. Such a system must have retrodirective control so that the high-power beam always points on target. This dissertation presents a new phased-array architecture for the SPS system that could considerably reduce its overall cost and complexity. In short, this dissertation presents technologies and techniques that reduce the cost of beam steering at microwave and millimeter-wave frequencies. The results of this work should have a far-ranging impact on the future of wireless systems.