Download Free Microstructural Stability Of Creep Resistant Alloys For High Temperature Plant Applications Book in PDF and EPUB Free Download. You can read online Microstructural Stability Of Creep Resistant Alloys For High Temperature Plant Applications and write the review.

The second in a series of international conferences focusing attention on the microstructural changes occurring in high temperature materials during service exposure and identifying the processes and mechanisms leading to the observed degradation of their mechanical properties. Highlights the work in progress to develop improved high temperature materials more resistant to microstructural degradation in service.
Provides information from around the world on creep in multiple high-temperature metals, alloys, and advanced materials.
This book is an outcome of the first conference in the series of specialist conferences, held at Robinson College, Cambridge in June 1996. It deals with the microstructural stability of high temperature, creep resistant, 9-12% Chromium martensitic power plant steels.
Hierarchical NiAl [nickel-aluminium compound]/Ni2TiAl [nickel-titanium-aluminum compound] or single Ni2TiAl-precipitate-strengthened ferritic alloys have been developed by adding 2 or 4 weight percent [wt. %] of Ti [titanium] into a previously-studied NiAl-precipitate-strengthened ferritic alloy. A systematic investigation has been conducted to study the interrelationships among the composition, microstructure, and mechanical behavior, and provide insight into deformation micro-mechanisms at elevated temperatures. The microstructural attributes of hierarchical or single precipitates are investigated in the Ti-containing ferritic alloys. Transmission-electron microscopy in conjunction with the atom-probe tomography is employed to characterize the detailed precipitate structure. It is observed that the 2-wt.-%-Ti alloy is reinforced by a two-phase NiAl/Ni2TiAl precipitate, which is coherently distributed in the Fe [iron] matrix, whereas the 4-wt.-%-Ti alloy consists of a semi-coherent single Ni2TiAl precipitate. The creep resistance of the 2-wt.-%-Ti alloy is significantly improved than the NiAl-strengthened ferritic alloy without the Ti addition and greater than the 4-wt.-%-Ti alloy. The microstructural evolution of precipitates during heat treatment at 973 K is investigated in the 2-and 4-wt.-%-Ti alloys. Transmission-electron microscopy and atom-probe tomography are used to study the precipitate evolution, such as the size, morphology, composition of the precipitates. It reveals that the hierarchical structure within the precipitate of the 2-wt.-%-Ti alloy evolves from the fine two-phase-coupled to agglomerated coarse structures, as the aging time increases. Moreover, the transition from the coherency to semi-coherency is concomitant with that of hierarchical structure within the precipitate. In-situ neutron-diffraction experiments during tensile and creep deformations reveal the interphase load-sharing mechanisms during plastic deformation at 973 K. The evolution of lattice strains during high-temperature deformation is further verified by crystal-plasticity finite-element simulations. In-situ neutron-diffraction experiments during stress relaxation at 973 K exhibits the load, which is transferred from the matrix to precipitate is relaxed, which indicate the occurrence of the diffusional flow along the matrix/precipitate interface. These results could provide a new alloy-design strategy, accelerate the advance in the development of creep-resistant alloys, and broaden the applications of ferritic alloys to higher temperatures.
Current fleets of conventional and nuclear power plants face increasing hostile environmental conditions due to increasingly high temperature operation for improved capacity and efficiency, and the need for long term service. Additional challenges are presented by the requirement to cycle plants to meet peak-load operation. This book presents a comprehensive review of structural materials in conventional and nuclear energy applications. Opening chapters address operational challenges and structural alloy requirements in different types of power plants. The following sections review power plant structural alloys and methods to mitigate critical materials degradation in power plants.
This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.
Over the last forty years a wide range of surface coatings have been developed to address the surface stability and thermal insulation of materials used in the gas turbine section of aero, industrial and land-based power generation equipment. High Temperature Surface Engineering, the Proceedings of the Sixth International Conference in the Series ‘Engineering the Surfaces’, reviews the surfacing technologies appropriate to oxidation, corrosion and thermal protection. Factors which underpin their choice for any given application are discussed in the proceedings. This highlights the importance of developing representative mechanical and physical test methods to elucidate coating degradation modes as an aid to establishing coating systems with improved engineering performance. During the organisation of the conference and in the compiling of this book we have been privileged to work with many of the leading specialists in the field of High Temperature Surface Engineering and it is our hope that this book will be a valuable reference guide for Engineers and Material Scientists.
This book develops methods to simulate and analyze the time-dependent changes of stress and strain states in engineering structures up to the critical stage of creep rupture. The objective of this book is to review some of the classical and recently proposed approaches to the modeling of creep for structural analysis applications. It also aims to extend the collection of available solutions of creep problems by new, more sophisticated examples.
By the late 1940s, and since then, the continuous development of dislocation theories have provided the basis for correlating the macroscopic time-dependent deformation of metals and alloys—known as creep—to the time-dependent processes taking place within the metals and alloys. High-temperature deformation and stress relaxation effects have also been explained and modeled on similar bases. The knowledge of high-temperature deformation as well as its modeling in conventional or unconventional situations is becoming clearer year by year, with new contemporary and better performing high-temperature materials being constantly produced and investigated. This book includes recent contributions covering relevant topics and materials in the field in an innovative way. In the first section, contributions are related to the general description of creep deformation, damage, and ductility, while in the second section, innovative testing techniques of creep deformation are presented. The third section deals with creep in the presence of complex loading/temperature changes and environmental effects, while the last section focuses on material microstructure–creep correlations for specific material classes. The quality and potential of specific materials and microstructures, testing conditions, and modeling as addressed by specific contributions will surely inspire scientists and technicians in their own innovative approaches and studies on creep and high-temperature deformation.