Download Free Microstructural Principles Of Food Processing Engineering Book in PDF and EPUB Free Download. You can read online Microstructural Principles Of Food Processing Engineering and write the review.

An Aspen Food Engineering Series Book. This new edition provides a comprehensive reference on food microstructure, emphasizing its interdisciplinary nature, rooted in the scientific principles of food materials science and physical chemistry. The book details the techniques available to study food microstructure, examines the microstructure of basic food components and its relation to quality, and explores how microstructure is affected by specific unit operations in food process engineering. Descriptions of a number of food-related applications provide a better understanding of the complexities of the microstructural approach to food processing. Color plates.
Emphasizing the products rather than the processes this is the first book to encompass quality changes during processing and storage of fruit in the food industry. It presents the influence on a fruit product’s quality in relation to the different processing methods, from freezing to high temperature techniques. It also discusses the origin of deterioration, kinetics of negative reactions, and methods for inhibition and control of the same.
This book presents a significant and up-to-date review of various integrated approaches to food engineering. Distinguished food engineers and food scientists from key institutions worldwide have contributed chapters that provide a deep analysis of their particular subjects. Emerging technologies and biotechnology are introduced, and the book discusses predictive microbiology, packing materials for foods, and biodegradable films. This book is mainly directed to academics, and to undergraduate and postgraduate students in food engineering and food science and technology, who will find a selection of topics.
Food Microstructure and Its Relationship with Quality and Stability is a comprehensive overview of the effects that the properties of the underlying structures of food have on its perceived quality to the consumer. The book's first section consists of chapters outlining the fundamentals of food microstructure, food composition, molecular mobility of various food constituents, and their relationships with food quality and stability. The role of various processing technologies in the production of specific microstructures for enhanced quality and stability is outlined. The second part of the book consists of various chapters devoted to microstructures, constituents and their relationship with quality, functionality, and stability of selected foods, for example, food hydrocolloids, frozen seafood, dried foods, extruded products, and dietary fibers. This information is of paramount importance for both academic researchers in the areas of food quality, preservation, and stability, as well as for food developers and processors. - Brings together leading experts from around the world to provide the latest information on a topic essential to the quality of food products - Includes dedicated chapters covering the microstructure of specific products and its relationship to quality and stability, making this book ideal for those working in industry - Provides a single reference source for a topic of great importance to a number of fields within both academic and industrial food sciences – food quality, stability, processing, and engineering
It is widely accepted that the creation of novel foods or improvement of existing foods largely depends on a strong understanding and awareness of the intricate interrelationship between the nanoscopic, microscopic and macroscopic features of foods and their bulk physiochemical properties, sensory attributes and healthfulness. With its distinguished editor and array of international contributors, Understanding and controlling the microstructure of complex foods provides a review of current understanding of significant aspects of food structure and methods for its control.Part one focuses on the fundamental structural elements present in foods such as polysaccharides, proteins and fats and the forces which hold them together. Part two discusses novel analytical techniques which can provide information on the morphology and behaviour of food materials. Chapters cover atomic force microscopy, image analysis, scattering techniques and computer analysis. Chapters in part three examine how the principles of structural design can be employed to improve performance and functionality of foods. The final part of the book discusses how knowledge of structural and physicochemical properties can be implemented to improve properties of specific foods such as ice-cream, spreads, protein-based drinks, chocolate and bread dough.Understanding and controlling the microstructure of complex foods is an essential reference for industry professionals and scientists concerned with improving the performance of existing food products and inventing novel food products. - Reviews the current understanding of significant aspects of food structure and methods for its control - Focuses on the fundamental structural elements present in foods such as proteins and fats and the forces that hold them together - Discusses novel analytical techniques that provide information on the morphology and behaviour of food materials
A unique and interdisciplinary field, food processing must meet basic process engineering considerations such as material and energy balances, as well as the more specialized requirements of food acceptance, human nutrition, and food safety. Food engineering, therefore, is a field of major concern to university departments of food science, and chemical and biological engineering as well as engineers and scientists working in various food processing industries. Part of the notable CRC Press Contemporary Food Engineering series, Food Process Engineering Operations focuses on the application of chemical engineering unit operations to the handling, processing, packaging, and distribution of food products. Chapters 1 through 5 open the text with a review of the fundamentals of process engineering and food processing technology, with typical examples of food process applications. The body of the book then covers food process engineering operations in detail, including theory, process equipment, engineering operations, and application examples and problems. Based on the authors’ long teaching and research experience both in the US and Greece, this highly accessible textbook employs simple diagrams to illustrate the mechanism of each operation and the main components of the process equipment. It uses simplified calculations requiring only elementary calculus and offers realistic values of food engineering properties taken from the published literature and the authors’ experience. The appendix contains useful engineering data for process calculations, such as steam tables, engineering properties, engineering diagrams, and suppliers of process equipment. Designed as a one or two semester textbook for food science students, Food Process Engineering Operations examines the applications of process engineering fundamentals to food processing technology making it an important reference for students of chemical and biological engineering interested in food engineering, and for scientists, engineers, and technologists working in food processing industries.
Physical and chemical interactions between various constituents of foods resulting from processing operations often lead to physical, sensory, and nutritional changes in the properties of foods. Answering the need for a resource in this area, this volume describes the effects of various processing technologies in different food processing situations. A first part looks at the physicochemical property changes of different foods undergoing selected processes, such as drying, extrusion, microencapsulation, and microwave assisted thermal processing. The second part focuses on the changes of physicochemical properties of different products, such as seafood, meat, and confectionary products.
The second edition of the Food Processing Handbook presents a comprehensive review of technologies, procedures and innovations in food processing, stressing topics vital to the food industry today and pinpointing the trends in future research and development. Focusing on the technology involved, this handbook describes the principles and the equipment used as well as the changes - physical, chemical, microbiological and organoleptic - that occur during food preservation. In so doing, the text covers in detail such techniques as post-harvest handling, thermal processing, evaporation and dehydration, freezing, irradiation, high-pressure processing, emerging technologies and packaging. Separation and conversion operations widely used in the food industry are also covered as are the processes of baking, extrusion and frying. In addition, it addresses current concerns about the safety of processed foods (including HACCP systems, traceability and hygienic design of plant) and control of food processes, as well as the impact of processing on the environment, water and waste treatment, lean manufacturing and the roles of nanotechnology and fermentation in food processing. This two-volume set is a must-have for scientists and engineers involved in food manufacture, research and development in both industry and academia, as well as students of food-related topics at undergraduate and postgraduate levels. From Reviews on the First Edition: "This work should become a standard text for students of food technology, and is worthy of a place on the bookshelf of anybody involved in the production of foods." Journal of Dairy Technology, August 2008 "This work will serve well as an excellent course resource or reference as it has well-written explanations for those new to the field and detailed equations for those needing greater depth." CHOICE, September 2006
Confectionery and chocolate manufacture has been dominated by large-scale industrial processing for several decades. It is often the case though, that a trial and error approach is applied to the development of new products and processes, rather than verified scientific principles. Confectionery and Chocolate Engineering: Principles and Applications, Second edition, adds to information presented in the first edition on essential topics such as food safety, quality assurance, sweets for special nutritional purposes, artizan chocolate, and confectioneries. In addition, information is provided on the fading memory of viscoelastic fluids, which are briefly discussed in terms of fractional calculus, and gelation as a second order phase transition. Chemical operations such as inversion, caramelization, and the Maillard reaction, as well as the complex operations including conching, drying, frying, baking, and roasting used in confectionery manufacture are also described. This book provides food engineers, scientists, technologists and students in research, industry, and food and chemical engineering-related courses with a scientific, theoretical description and analysis of confectionery manufacturing, opening up new possibilities for process and product improvement, relating to increased efficiency of operations, the use of new materials, and new applications for traditional raw materials.