Download Free Microrna Profiling In Cancer Book in PDF and EPUB Free Download. You can read online Microrna Profiling In Cancer and write the review.

This book presents current advances in the emerging interdisciplinary field of microRNA research of human cancers from a unique perspective of quantitative sciences: bioinformatics, computational and systems biology, and mathematical modeling. This volume contains adaptations and critical reviews of recent state-of-the-art studies, ranging from technological advances in microRNA detection and profiling, clinically oriented microRNA profiling in several human cancers, to a systems biology analysis of global patterns of microRNA regulation of signaling and metabolic pathways. Interactions with transcription factor regulatory networks and mathematical modeling of microRNA regulation are also discussed.
This second edition provides updated and comprehensive methods on miRNA biogenesis and their role in the development and progression of various human diseases. Chapters detail miRNA biogenesis, isolating RNA, extracellular vesicles (EVs), circulating miRNAs, analyzing miRNA and miRDeep-P2, protocols for total RNA isolation from cells, cell-derived products, isolation and characterization of exosomes, serum, plasma specimens, and software tools. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, MicroRNA Profiling: Methods and Protocols, Second Edition aims to provide comprehensive and accessible methods to undergraduate, graduate, and established scientist.
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules of approximately 22 nucleotides that regulate gene expression at the post-transcriptional level. Alterations in miRNA expression patterns correlate with a wide spectrum of pathological conditions, including cancer. miRNA profiling was mostly performed, in solid tissues, obtained by invasive diagnostic procedures. However, miRNAs in biofluids, such as serum and plasma, show high stability resulting from the formation of complexes with specific protein or incorporation within circulating exosomes or other microvesicles. Circulating miRNAs could be reliable biomarkers for early-stage cancer diagnosis, prognosis and response to therapy. In this chapter, we analyze the major pre-analytical and analytical challenges in experimental design for circulating miRNA detection, focusing on exosome fraction and microarray-based approach.
MicroRNA (miRNA) biology is a cutting-edge topic in basic as well as biomedical research. This is a specialized book focusing on the current understanding of the role of miRNAs in the development, progression, invasion, and metastasis of diverse types of cancer. It also reviews their potential for applications in cancer diagnosis, prognosis, and therapeutic targets as well as the potential use in translational medicine. Chapters present comprehensive and expert perspectives on the roles of miRNAs in most common cancers from bench to bedside applications and are written by an international team of renowned experts in the field.
This book is a printed edition of the Special Issue MicroRNA as Biomarkers in Cancer Diagnostics and Therapy that was published in IJMS
MicroRNAs (miRNAs) are a class of ~22 nt short, non-coding RNAs that post-transcriptionally regulate target mRNA expression. To date, ~2,000 mature miRNAs have been identified in humans and they are estimated to regulate about 50% of human genes. miRNAs, due to their ubiquitous target distribution, contribute to diverse processes including cell development, proliferation, differentiation, apoptosis, and metabolism. Dysregulation of miRNA expression has been reported in various cancers and metabolic disorders. miRNA are also implicated in the initiation and progression of those diseases. In my dissertation, I studied the differentially expressed (DE) miRNAs upon prostaglandin E2 (PGE2) stimulation in prostate cancer cells (PC-3). Concurrently I examined mRNA expression profile of the PC-3 system and determined anticorrelated miRNA:mRNA pairs. The DE miRNAs and their putative targets were affected by the induction of PGE2. They were suggested to be involved in PGE2 dysregulated signaling pathways in PC-3 prostate cancer. In the second part of the thesis work, I identified a set of adipose-enriched miRNAs from porcine tissues samples and verified that these miRNAs were conserved in humans. Adipose-enriched miRNAs were reported to be involved in metabolism, inflammation responses, and tumorigenesis. The analysis results of my thesis experiments suggested adipose-enriched miRNAs may have a potential role in connecting obesity, inflammation, and cancer. It is hoped that the understanding of the molecular basis in cancer and metabolic disorders on the miRNA level will provide new diagnostic targets and therapeutic targets for the diseases..
MicroRNAs (miRNAs), endogenous noncoding regulatory mRNAs of - nucleotides, have rapidly emerged as the central players in gene expression regulation. Owing to their ever-increasing implications in the control of various biological and pathological processes, miRNAs have now been considered novel biomarkers of various human diseases including, cancer, viral disease, cardiov- cular disorders, metabolic disturbances, etc. Particular expression pro?les have been associated with particular pathological states. Expression pro?ling of miR- NAs have therefore become extremely important not only for fundamentalists but also for clinicians. However, the methodologies used for detecting protein-coding mRNAs cannot be directly applied to miRNAs because of their small size. Over the past years, researchers have made great efforts to developing techniques suitable for miRNA detection and quanti?cation; a wide spectrum of creative and inno- tive techniques (more than 30 different methods) have been invented and validated. It has come to the time now to summarize these methods and present them in an orderly manner for better understanding and utilization of these methods to miRNA research and applications. In particular, the development of methods for quantifying circulating miRNAs opens up a fascinating opportunity for realizing miRNA as diagnostic and prognostic biomarkers of human disease. A book on this subject may help boosting up the passion of researchers to further improve the existing techniques and develop more new methods to ?t to new application needs. These considerations prompted us and urged us to undertake the work: writing a book focusing on miRNA expression detection methods.
The field of microRNA biology is really emerging in the last couple of years. Several investigators highlighted the importance of miRNAs in cancer. Although there is so much literature on microRNAs exist, a comprehensive book is still not available. Thus this book will be a great use to the scientists in the field of cancer biology. In addition, this book will be a good source of information for undergraduate, graduate students who want to develop their research careers in cancer biology.
MicroRNAs have recently emerged as key regulators of gene expression during development and are frequently misexpressed in human disease states, in particular cancer. These 22-nucleotide-long transcripts act to promote or repress cell proliferation, migration and apoptosis during development, all of which are processes that go awry in cancer. Thus, microRNAs have the ability to behave like oncogenes or tumor suppressors. In addition, their small size and molecular properties make them amenable as targets and therapeutics in cancer treatment. This book goes into detail on how microRNAs represent a paradigm shift in thinking about gene regulation during development and disease, and provide the oncologist with a potentially powerful new battery of agents to diagnose and treat cancer.
miRNAs are a class of endogenous, small non-protein coding RNA molecules (~ 22 nucleotides) which are novel post-transcriptional regulators of gene expression. Since we have hundreds of miRNAs, the major challenge is now to understand their specific biological function. In fact the experimental evidence suggests that signaling pathways could be ideal candidates for miRNA-mediated regulation. Several studies suggest that miRNAs affect the responsiveness of cells to signaling molecules such as WNT, Notch, TGF-β and EGFR. Altered expression of particular miRNAs has been implicated in the onset and development of cancer and could be used as potential biomarkers for the disease. Recently, many studies have found miRNAs have crucial regulatory roles in Cancer stem cells (CSCs) a kind of tumor initiating cells (TICs) and dormancy. Findings also suggest that DNA methylation may be important in regulating the expression of many miRNAs in several cancer initiating cells. Several miRNAs are known to either upregulated or downregulated in CSCs when compared to non-cancerous cells from the same tissues. CSCs are a small subpopulation of cells identified in a variety of tumors and involve in self-renewal, differentiation, chemoresistance and tumorigenesis. The volume will give a comprehensive account of important advancements in the area of miRNAs and cancer.