Download Free Microrna In Human Malignancies Book in PDF and EPUB Free Download. You can read online Microrna In Human Malignancies and write the review.

This edited reflects the current state of knowledge about the role of microRNAs in the formation and progression of solid tumours. The main focus lies on computational methods and applications, together with cutting edge experimental techniques that are used to approach all aspects of microRNA regulation in cancer. We are sure that the emergence of high-throughput quantitative techniques will make this integrative approach absolutely necessary in the near future. This book will be a resource for researchers starting out with cancer microRNA research, but is also intended for the experienced researcher who wants to incorporate concepts and tools from systems biology and bioinformatics into his work. Bioinformaticians and modellers are provided with a general perspective on microRNA biology in cancer, and the state-of-the-art in computational microRNA biology.
MicroRNA (miRNA) biology is a cutting-edge topic in basic as well as biomedical research. This is a specialized book focusing on the current understanding of the role of miRNAs in the development, progression, invasion, and metastasis of diverse types of cancer. It also reviews their potential for applications in cancer diagnosis, prognosis, and th
The field of microRNA biology is really emerging in the last couple of years. Several investigators highlighted the importance of miRNAs in cancer. Although there is so much literature on microRNAs exist, a comprehensive book is still not available. Thus this book will be a great use to the scientists in the field of cancer biology. In addition, this book will be a good source of information for undergraduate, graduate students who want to develop their research careers in cancer biology.
MicroRNA in Human Malignancies offers a deep overview of the role and translational significance of miRNAs in the development of cancer and other malignancies. The book establishes the foundations of the field by covering essential mechanisms and the translational potential of miRNAs in the field of oncology. Specific topics covered include invasion and metastasis, miRNAs and metabolism, and opportunities of miRNAs in therapeutics. Chapters on diseases include content on disease-related pathophysiology, as well as diagnostic, prognostic and predictive value. This book is an essential reference for students entering the field, as well as researchers and investigators. - Provides fundamental and translational chapters that facilitate the acquisition of knowledge needed to design and perform innovative miRNA-related research studies - Synthesizes current research, with a critical review on the field - Offers in-depth research by leading experts in the field
This book presents current advances in the emerging interdisciplinary field of microRNA research of human cancers from a unique perspective of quantitative sciences: bioinformatics, computational and systems biology, and mathematical modeling. This volume contains adaptations and critical reviews of recent state-of-the-art studies, ranging from technological advances in microRNA detection and profiling, clinically oriented microRNA profiling in several human cancers, to a systems biology analysis of global patterns of microRNA regulation of signaling and metabolic pathways. Interactions with transcription factor regulatory networks and mathematical modeling of microRNA regulation are also discussed.
This new volume of Current Topics in Developmental Biology covers developmental timing, with contributions from an international board of authors. The chapters provide a comprehensive set of reviews covering such topics as the timing of developmental programs in Drosophila, temporal patterning of neural progenitors, and environmental modulation of developmental timing.
In the past few decades there has been incredible growth in "bionano"-related research, which has been accompanied by numerous publications in this field. Although various compilations address topics related to deoxyribonucleic acid (DNA) and protein, there are few books that focus on determining the structure of ribonucleic acid (RNA) and using RNA as building blocks to construct nanoarchitectures for biomedical and healthcare applications. RNA Nanotechnology is a comprehensive volume that details both the traditional approaches and the latest developments in the field of RNA-related technology. This book targets a wide audience: a broad introduction provides a solid academic background for students, researchers, and scientists who are unfamiliar with the subject, while the in-depth descriptions and discussions are useful for advanced professionals. The book opens with reviews on the basic aspects of RNA biology, computational approaches for predicting RNA structures, and traditional and emerging experimental approaches for probing RNA structures. This section is followed by explorations of the latest research and discoveries in RNA nanotechnology, including the design and construction of RNA-based nanostructures. The final segment of the book includes descriptions and discussions of the potential biological and therapeutic applications of small RNA molecules, such as small/short interfering RNAs (siRNAs), microRNAs (miRNAs), RNA aptamers, and ribozymes.
The collection of chapters in this proceeding volume reflects the latest research presented at the Aegean meeting on Tumor Microenvironment and Cellular Stress held in Crete in Fall of 2012. The book provides critical insight to how the tumor microenvironment affects tumor metabolism, cell stemness, cell viability, genomic instability and more. Additional topics include identifying common pathways that are potential candidates for therapeutic intervention, which will stimulate collaboration between groups that are more focused on elucidation of biochemical aspects of stress biology and groups that study the pathophysiological aspects of stress pathways or engaged in drug discovery.
Given this pervasiveness and importance of miRNA-mediated gene regulation, it should come as little surprise that miRNAs themselves are also highly regulated. However, the recent explosion of knowledge on this topic has been remarkable, providing a primary motivation for publication of this book. As miRNAs are transcribed by RNA polymerase II, the enzyme that also generates mRNAs, it was perhaps not unexpected that miRNA transcription would be subject to regulation, and we have willfully mitted this aspect from this monograph. However, what has been unexpected is the extent of post-transcriptional regulation of miRNAs that is illustrated in this book.
Oncogenes and tumour suppressor genes have been the focus of much research because of their role not only in cancer but also in normal cell growth and differentiation. Oncogenes and Tumour Suppressors is a unique volume that brings together a team of leading researchers to present and critically assess our current knowledge. The book covers two major areas of interest: oncogenes and signal transduction, and tumour supressors and cell cycle control. Topics covered include the mechanisms of oncogene perturbation; growth factors and their receptors in cell transformation; oncogenic cytoplasmic protein tyrosine kinases; the RAS/RAP/ERK signal transduction pathway; oncogenic transcription factors; mammalian cell cycle control; the retinoblastoma gene product and its relatives; the tumour suppressor gene p53; tumour suppressors and the inheritance of cancer; the clinical relevance of oncogenes. Oncogenes and Tumour Suppressors is a major review work that provides an unparalleled summary of our current understanding of this field as viewed by some of its leading researchers. It is of interest to all those involved in research on the cell cycle, signal transduction, and cancer biology. The book is also an excellent reference source with over 1800 selected citations to the primary literature.