Download Free Micropropagation Of Woody Plants Book in PDF and EPUB Free Download. You can read online Micropropagation Of Woody Plants and write the review.

This volume covers recent advances in the vegetative propagation of woody plants by tissue culture. A wide range of topics relevant to micropropagation of woody plants are discussed by renowned international scientists. These include cellular contro of morphogenesis, light regimes in tissue culture, maturation and rejuvenation, synthetic seed, genetics of micropropagated plants, haploid embryogenesis, protoplast culture, and acclimatization of ex vitro woody plants. In addition to micropropagation of selected woody plants, both gymnosperms and angiosperms, this volume also includes in vitro genetic selection, strategic planning for application of biotechnology for genetics and breeding, and clonal options for woody plant improvement. A balanced view of both perspectives and limitations of woody plant micropropagation is presented.
Micropropagation has become a reliable and routine approach for large-scale rapid plant multiplication, which is based on plant cell, tissue and organ culture on well defined tissue culture media under aseptic conditions. A lot of research efforts are being made to develop and refine micropropagation methods and culture media for large-scale plant multiplication of several number of plant species. However, many forest and fruit tree species still remain recalcitrant to in vitro culture and require highly specific culture conditions for plant growth and development. The recent challenges on plant cell cycle regulation and the presented potential molecular mechanisms of recalcitrance are providing excellent background for understanding on totipotency and what is more development of micropropagation protocols. For large-scale in vitro plant production the important attributes are the quality, cost effectiveness, maintenance of genetic fidelity, and long-term storage. The need for appropriate in vitro plant regeneration methods for woody plants, including both forest and fruit trees, is still overwhelming in order to overcome problems facing micropropagation such as somaclonal variation, recalcitrant rooting, hyperhydricity, polyphenols, loss of material during hardening and quality of plant material. Moreover, micropropagation may be utilized, in basic research, in production of virus-free planting material, cryopreservation of endangered and elite woody species, applications in tree breeding and reforestation.
This book provides comprehensive information on micropropagation of economically important forest and fruit trees, which is usually available in scattered literature. Topics cover a wide range, from tropical forest and fruit trees for paper or food supply, to Prunus species for local craft bark production.
The genesis of the volume, Plant Biotechnology and Molecular Markers, has been the occasion of the retirement of Professor Sant Saran Bhojwani from the Department of Botany, University of Delhi. For Professor Bhojwani, retirement only means relinquishing the chair as being a researcher and a teacher which has always been a way of life to him. Professor Bhojwani has been an ardent practitioner of modern plant biology and areas like Plant Biotechnology and Molecular Breeding have been close to his heart. The book contains original as well as review articles contributed by his admirers and associates who are experts in their area of research. While planning this contributory book our endeavour has been to incorporate articles that cover the entire gamut of Plant Biotechnology, and also applications of Molecular Markers. Besides articles on in vitro fertilization and micropropagation, there are articles on forest tree improvement through genetic engineering. Considering the importance of conservation of our precious natural wealth, one article deals with cryopreservation of plant material. Chapter on molecular marker considers DNA indexing as markers of clonal fidelity of in vitro regenerated plants and prevention against bio-piracy. A couple of write-ups also cover stage-specific gene markers, DNA polymorphism and genetic engineering, including raising of stress tolerant plants to sustain productivity and help in reclamation of degraded land.
Since the first edition of our book "Tissue Culture in Fores try" in 1982 we have witnessed remarkable advances in cell and tissue culture technologies with woody perennials. In addition to forest biologists in government, industry, and universities, we now have molecular biologists, genetic engineers, and biochemists using cell and tissue cultures of woody species routinely. There fore, the time has come for an update of the earlier edition. In our present effort to cover new developments we have expanded to three volumes: 1. General principles and Biotechnology 2. Specific Principles and Methods: Growth and Development 3. Case Histories: Gymnosperms, Angiosperms and Palms The scientific barriers to progress in tree improvement are not so much lack of foreign gene expression in plants but our current inabili ty to regenerate plants in true-to-type fashion on a mas sive and economic scale. To achieve this in the form of an appro pr iate biotechnology, cell and tissue culture will increasing ly require a better understanding of basic principles in chemistry and physics that determine structural and functional relationships among molecules and macromolecules (proteins, RNA, DNA) within cells and tissues. These principles and their relationship with the culture medium and its physical environment, principles of clonal propagation, and genetic variation and ultrastructure are discussed in volume one.
Plant Tissue Culture Techniques and Experiments is a manual that contains laboratory exercises about the demonstration of the methods and different plant materials used in plant tissue culture. It provides an overview on the plant cell culture techniques and plant material options in selecting the explant source. This book starts by discussing the proper setup of a tissue culture laboratory and the selection of the culture medium. It then explains the determination of an explant which is the ultimate goal of the cell culture project. The explant is a piece of plant tissue that is used in tissue culture. Furthermore, the book discusses topics about callus induction, regeneration and morphogenesis process, and haploid plants from anther and pollen culture. The meristem culture for virus-free plants and in vitro propagation for commercial propagation of ornamentals are also explained in this manual. The book also provides topics and exercises on the protoplast isolation and fusion and agrobacterium-mediated transformation of plants. This manual is intended for college students, both graduate and undergraduate, who study chemistry, plant anatomy, and plant physiology.
Plant tissue culture (PTC) technology has gained unassailable success for its various commercial and research applications in plant sciences. Plant growth regulators (PGRs) are an essential part of any plant tissue culture intervention for propagation or modification of plants. A wide range of PGRs are available, including aromatic compounds that show cytokinin activities, promote cell division and micro-propagation, viz. kinetin, N6-benzyladenine and topolins. Topolins are naturally occurring aromatic compounds that have gained popularity as an effective alternative for other frequently used cytokinins in in vitro culture of plants. Among them, meta-topolin [6-(3-hydroxybenzlyamino) purine] is the most popular and its use in plant tissue culture has amplified swiftly. During the last few decades, there have been numerous reports highlighting the effectiveness of meta-topolin in micropropagation and alleviation of various physiological disorders, rooting and acclimatization of tissue culture raised plants.
Plant Tissue Culture, Third Edition builds on the classroom tested, audience proven manual that has guided users through successful plant culturing A.tumefaciens mediated transformation, infusion technology, the latest information on media components and preparation, and regeneration and morphogenesis along with new exercises and diagrams provide current information and examples. The included experiments demonstrate major concepts and can be conducted with a variety of plant material that are readily available throughout the year. This book provides a diverse learning experience and is appropriate for both university students and plant scientists. Provides new exercises demonstrating tobacco leaf infiltration to observe transient expression of proteins and subcellular location of the protein, and information on development of a customized protocol for protoplast isolation for other experimental systems Includes detailed drawings that complement both introductions and experiments Guides reader from lab setup to supplies, stock solution and media preparation, explant selection and disinfestations, and experimental observations and measurement Provides the latest techniques and media information, including A. tumefaciens mediated transformation and infusion technology Fully updated literature
For many, the terms aging, maturation and senescence are synonymous and used interchangeably, but they should not be. Whereas senescence represents an endogenously controlled degenerative programme leading to plant or organ death, genetiC aging encompasses a wide array of passive degenerative genetiC processes driven primarily by exogenous factors (Leopold, 1975). Aging is therefore considered a consequence of genetiC lesions that accumulate over time, but by themselves do not necessarily cause death. These lesions are probably made more severe by the increase in size and complexity in trees and their attendant physiology. Thus while the withering of flower petals following pollination can be considered senescence, the loss of viability of stored seeds more clearly represents aging (Norden, 1988). The very recent book "Senescence and Aging in Plants" does not discuss trees, the most dominant group of plants on the earth. Yet both angiospermic and gymnospermic trees also undergo the above phenomena but less is known about them. Do woody plants senesce or do they just age? What is phase change? Is this synonymous with maturation? While it is now becoming recognized that there is no programmed senescence in trees, senescence of their parts, even in gymnosperms (e. g. , needles of temperate conifers las t an average of 3. 5 years), is common; but aging is a readily acknowledged phenomenon. In theory, at least, in the absence of any programmed senescence trees should -live forever, but in practice they do not.
Includes a DVD Containing All Figures and Supplemental Images in PowerPoint This new edition of Plant Propagation Concepts and Laboratory Exercises presents a robust view of modern plant propagation practices such as vegetable grafting and micropropagation. Along with foundation knowledge in anatomy and plant physiology, the book takes a look into the future and how cutting edge research may impact plant propagation practices. The book emphasizes the principles of plant propagation applied in both temperate and tropical environments. In addition to presenting the fundamentals, the book features protocols and practices that students can apply in both laboratory and field experiences. The book shows readers how to choose the best methods for plant propagation including proper media and containers as well as performing techniques such as budding, cutting, layering, grafting, and cloning. It also discusses how to recognize and cope with various propagation challenges. Also included are concept chapters highlighting key information, laboratory exercises, anticipated laboratory results, stimulating questions, and a DVD containing all the figures in the book as well as some supplemental images.