Download Free Micropropagation Of Medicinal Plants Book in PDF and EPUB Free Download. You can read online Micropropagation Of Medicinal Plants and write the review.

This volume presents information about protocols for micropropagation of more than 40 species of medicinal plants. The contents combine knowledge about the scientific principles of micropropagation with state of the art updates in tissue culture techniques presented by plant scientists. The readers will learn about techniques required to grow plants in challenging conditions that aim to reduce the impacts of injudicious harvesting, deforestation, climate change, pollution, urbanization and other factors that limit the ability to meet current demand. General topics such as biotization and pharmaceutical investigation are also included to guide readers about the significance of these plants in research and development for new medicines. The book provides protocols for micropropagation of important medicinal plants like Rauvolfia serpentina, Catharanthus roseus, Withania somnifera, Tylophora indica, Bacopa monnieri, Aloe vera, Phyllanthus amarus, Allium sativum, Moringa oleifera, Operculina turpethum, Glycyrrhiza glabra, Pterocarpus marsupium, Vetiver grass, Ruta graveolens, Tinospora cordifolia, Kaempferia, Hedychium, Decalepis hamiltonii, Saraca asoca, Wrightia tinctoria, Wrightia arborea, Artemisia absinthium, Aegle marmelos, Atropa acuminata, Atropa belladonna, Alpinia species, Hedychium species, and Cissus species. This book is a handy reference for medicinal chemists, horticulturists and pharmacists who want to learn about the growth and conservation of important medicinal herbs and plants.
Plant-based medicines play an important role in all cultures, and have been indispensable in maintaining health and combating diseases. The identification of active principles and their molecular targets from traditional medicine provides an enormous opportunity for drug development. Using modern biotechnology, plants with specific chemical compositions can be mass propagated and genetically improved for the extraction of bulk active pharmaceuticals. Although there has been significant progress in the use of biotechnology, using tissue cultures and genetic transformation to investigate and alter pathways for the biosynthesis of target metabolites, there are many challenges involved in bringing plants from the laboratory to successful commercial cultivation. This book presents the latest advances in the development of medicinal drugs, including topics such as plant tissue cultures, secondary metabolite production, metabolomics, metabolic engineering, bioinformatics and future biotechnological directions.
The purpose of this book is to provide the advances in plant in vitro culture as related to perennial fruit crops and medicinal plants. Basic principles and new techniques, now available, are presented in detail. The book will be of use to researchers, teachers in biotechnology and for individuals interested to the commercial application of plant in vitro culture.
This volume presents information about protocols for micropropagation of more than 40 species of medicinal plants. The contents combine knowledge about the scientific principles of micropropagation with state of the art updates in tissue culture techniques presented by plant scientists. The readers will learn about techniques required to grow plants in challenging conditions that aim to reduce the impacts of injudicious harvesting, deforestation, climate change, pollution, urbanization and other factors that limit the ability to meet current demand. General topics such as biotization and pharmaceutical investigation are also included to guide readers about the significance of these plants in research and development for new medicines. The book provides protocols for micropropagation of important medicinal plants like Rauvolfia serpentina, Catharanthus roseus, Withania somnifera, Tylophora indica, Bacopa monnieri, Aloe vera, Phyllanthus amarus, Allium sativum, Moringa oleifera, Operculina turpethum, Glycyrrhiza glabra, Pterocarpus marsupium, Vetiver grass, Ruta graveolens, Tinospora cordifolia, Kaempferia, Hedychium, Decalepis hamiltonii, Saraca asoca, Wrightia tinctoria, Wrightia arborea, Artemisia absinthium, Aegle marmelos, Atropa acuminata, Atropa belladonna, Alpinia species, Hedychium species, and Cissus species. This book is a handy reference for medicinal chemists, horticulturists and pharmacists who want to learn about the growth and conservation of important medicinal herbs and plants. Readership Medicinal chemists, horticulturists and pharmacists.
This volume, sixth in the series High-Tech and Micropropagation, contains 27 chapters arranged in the following two sections: I. Ornamental and Aromatic Plants: amaryllis, Anthurium, Blandfordia, bromeliads, Campanula, Coleus, Ctenanthe, Cyclamen, Daphne, Dracaena, Gerbera, Helianthemum, Leucojum, Mamilaria, Mediocactus, Mussaenda, Narcissus, Otacanthus, ponytail palm, Prunus tenella, Spiranthes, and zinnia. II. Medicinal and Miscellaneous Plants: Duboisia, Matricaria, Sideritis, Dictamnus albus, and Simmondsia chinensis. This book is of use to research workers, advanced students, and teachers in the field of horticulture, botany, and plant biotechnology in general, and also to individuals interested in industrial micropropagation.
This book presents basic concepts, methodologies and applications of biotechnology for the conservation and propagation of aromatic, medicinal and other economic plants. It caters to the needs and challenges of researchers in plant biology, biotechnology, the medical sciences, pharmaceutical biotechnology and pharmacology areas by providing an accessible and cost-effective practical approach to micro-propagation and conservation strategies for plant species. It also includes illustrations describing a complete documentation of the results and research into particular plant species conducted by the authors over the past 5 years. Plant Biotechnology has been a subject of academic interest for a considerable time. In recent years, it has also become a useful tool in agriculture and medicine, as well as a popular area of biological research. Current economic growth is globally projected in a highly positive manner, but the challenges many countries face with regard to food, feed, malnutrition, infectious diseases, the newly identified life-style diseases, and energy shortages, all of which are worsened by an ever-deteriorating environment, continue to pull the growth digits back. The common thread that connects all of the above challenges is biotechnology, which could provide many answers. Molecular biology and biotechnology have now become an integral part of tissue culture research. The tremendous impact generated by genetic engineering and consequently of transgenics now allows us to manipulate plant genomes at will. There has indeed been a rapid development in this area with major successes in both developed and developing countries. The book introduces several new and exciting areas to researchers who are unfamiliar with plant biotechnology and also serves as a review of ongoing research and future directions for scholars. The book highlights numerous methods for in vitro propagation and utilization of techniques in raising transgenics to help readers reproduce the experiments discussed.
Scientific Study from the year 2014 in the subject Biology - Botany, grade: 100.00, Meerut Institute of Technology, language: English, abstract: We carried out research out with the topic of tissue culture technology for the large scale and sustainable production of quality planting material of elite medicinal plants and developped a database of Indian medicinal plants with the following objectives: (1) Establishment of tissue culture protocol for seven medicinal plants. (2) Standardizing the physicochemical conditions for large-scale in vitro multiplication. (3) Standardization of various media types and growth regulators. (4) Studying the competency of in vitro plants to sustain the subculture durations. (5) Collection of data of medicinal plants for creating a database (an online webpage). (6) Compiling and designing of database. (7) Publishing the database online. Medicinal plants are the great natural resources but due to lack of knowledge, arbitrary use and lack of conservation measures many important medicinal plant species are becoming extinct, endangered and threatened. In the present research, micropropagation studies were carried out on ten medicinal plants, showed best respond in seven medicinal plants among them. Callus cultures and shoot cultures were successfully initiated on basal MS media supplemented with different plant growth regulators (2,4-D, NAA, IAA and BAP) of various concentrations. These can be beneficial aspect in future as for exporting or making available the plants to farmers of superior genotype. This would also facilitate in metabolite extraction and supply in drug industries. An online static database in the form of a web site was also created named as “MedDBase”. This database facilitates the medicinal as well as tissue culture information of all Indian medicinal plants. The list contained Indian medicinal plants more than 5000, is retrieved from the NMPB site and arranged in Alphabetical order. This online database will help the scientific community to keep themselves updated with the research and development work being carried out for a particular medicinal plant. This will also help in reducing duplication/ repetition of same work.
Micropropagation has become a reliable and routine approach for large-scale rapid plant multiplication, which is based on plant cell, tissue and organ culture on well defined tissue culture media under aseptic conditions. A lot of research efforts are being made to develop and refine micropropagation methods and culture media for large-scale plant multiplication of several number of plant species. However, many forest and fruit tree species still remain recalcitrant to in vitro culture and require highly specific culture conditions for plant growth and development. The recent challenges on plant cell cycle regulation and the presented potential molecular mechanisms of recalcitrance are providing excellent background for understanding on totipotency and what is more development of micropropagation protocols. For large-scale in vitro plant production the important attributes are the quality, cost effectiveness, maintenance of genetic fidelity, and long-term storage. The need for appropriate in vitro plant regeneration methods for woody plants, including both forest and fruit trees, is still overwhelming in order to overcome problems facing micropropagation such as somaclonal variation, recalcitrant rooting, hyperhydricity, polyphenols, loss of material during hardening and quality of plant material. Moreover, micropropagation may be utilized, in basic research, in production of virus-free planting material, cryopreservation of endangered and elite woody species, applications in tree breeding and reforestation.