Download Free Micropolar Fluids Book in PDF and EPUB Free Download. You can read online Micropolar Fluids and write the review.

Micropolar fluids are fluids with microstructure. They belong to a class of fluids with nonsymmetric stress tensor that we shall call polar fluids, and include, as a special case, the well-established Navier-Stokes model of classical fluids that we shall call ordinary fluids. Physically, micropolar fluids may represent fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The model of micropolar fluids introduced in [65] by C. A. Eringen is worth studying as a very well balanced one. First, it is a well-founded and significant generalization of the classical Navier-Stokes model, covering, both in theory and applications, many more phenomena than the classical one. Moreover, it is elegant and not too complicated, in other words, man ageable to both mathematicians who study its theory and physicists and engineers who apply it. The main aim of this book is to present the theory of micropolar fluids, in particular its mathematical theory, to a wide range of readers. The book also presents two applications of micropolar fluids, one in the theory of lubrication and the other in the theory of porous media, as well as several exact solutions of particular problems and a numerical method. We took pains to make the presentation both clear and uniform.
Micropolar fluids are fluids with microstructure. They belong to a class of fluids with nonsymmetric stress tensor that we shall call polar fluids, and include, as a special case, the well-established Navier-Stokes model of classical fluids that we shall call ordinary fluids. Physically, micropolar fluids may represent fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The model of micropolar fluids introduced in [65] by C. A. Eringen is worth studying as a very well balanced one. First, it is a well-founded and significant generalization of the classical Navier-Stokes model, covering, both in theory and applications, many more phenomena than the classical one. Moreover, it is elegant and not too complicated, in other words, man ageable to both mathematicians who study its theory and physicists and engineers who apply it. The main aim of this book is to present the theory of micropolar fluids, in particular its mathematical theory, to a wide range of readers. The book also presents two applications of micropolar fluids, one in the theory of lubrication and the other in the theory of porous media, as well as several exact solutions of particular problems and a numerical method. We took pains to make the presentation both clear and uniform.
This book provides an introduction to theories of fluids with microstruc ture, a subject that is still evolving, and information on which is mainly available in technical journals. Several approaches to such theories, employ ing different levels of mathematics, are now available. This book presents the subject in a connected manner, using a common notation and a uniform level of mathematics. The only prerequisite for understanding this material is an exposure to fluid mechanics using Cartesian tensors. This introductory book developed from a course of semester-length lec tures that were first given in the Department of Chemical Engineering at the University of Delaware and subsequently were given in the Department of Mechanical Engineering at the Indian Institute of Technology, Kanpur. The encouragement of Professor A. B. Metzner and the warm hospitality of the Department of Chemical Engineering, University of Delaware, where the first set of notes for this book were prepared (1970-71), are acknowledged with deep appreciation. Two friends and colleagues, Dr. Raminder Singh and Dr. Thomas F. Balsa, made helpful suggestions for the improvement of this manuscript. The financial support provided by the Education Development Centre of the Indian Institute of Technology, Kanpur, for the preparation of the manuscript is gratefully acknowledged.
This book broadens the knowledge of tribology. This book is evolved out of current research trends on tribological performance of systems related to nano tribology, rheology, engines, polymer brushes, composite materials, erosive wear and lubrication. The book deals with enhancing the ideas on tribological properties, the different types of wear phenomenon and lubrication enhancement. Further, the tribological performance of systems, whether nano, micro or macro-scale, depends upon a large number of external parameters and important among them are temperature, contact pressure and relative speed. Thus, the book focus on the theoretical aspects to industrial applications of tribology.
Applications of Heat, Mass and Fluid Boundary Layers brings together the latest research on boundary layers where there has been remarkable advancements in recent years. This book highlights relevant concepts and solutions to energy issues and environmental sustainability by combining fundamental theory on boundary layers with real-world industrial applications from, among others, the thermal, nuclear and chemical industries. The book's editors and their team of expert contributors discuss many core themes, including advanced heat transfer fluids and boundary layer analysis, physics of fluid motion and viscous flow, thermodynamics and transport phenomena, alongside key methods of analysis such as the Merk-Chao-Fagbenle method. This book's multidisciplinary coverage will give engineers, scientists, researchers and graduate students in the areas of heat, mass, fluid flow and transfer a thorough understanding of the technicalities, methods and applications of boundary layers, with a unified approach to energy, climate change and a sustainable future.
In their 1909 publication Théorie des corps déformables, Eugène and François Cosserat made a historic contribution to materials science by establishing the fundamental principles of the mechanics of generalized continua. The chapters collected in this volume showcase the many areas of continuum mechanics that grew out of the foundational work of the Cosserat brothers. The included contributions provide a detailed survey of the most recent theoretical developments in the field of generalized continuum mechanics and can serve as a useful reference for graduate students and researchers in mechanical engineering, materials science, applied physics and applied mathematics.
This Special Issue contains articles include, but not limited to, empirical, analytical, or design-oriented approaches to the following topics: Monitoring of carrying capacity and mechanisms for managing tourist flows in rural areas; Systems and tools to measure the social, economic, and environmental sustainability of rural tourism; Integration between public tourism policies and private strategies in the promotion and implementation of sustainable practices; Policies for promoting public participation in the planning and development of sustainable rural tourism; The impacts of tourism on traditional agricultural activities; Identity enhancement of the territory and its productions; "Good practices" in the implementation of rural tourism sustainability.
This Research Note presents several contributions and mathematical studies in fluid mechanics, namely in non-Newtonian and viscoelastic fluids and on the Navier-Stokes equations in unbounded domains. It includes review of the mathematical analysis of incompressible and compressible flows and results in magnetohydrodynamic and electrohydrodynamic stability and thermoconvective flow of Boussinesq-Stefan type. These studies, along with brief communications on a variety of related topics comprise the proceedings of a summer course held in Lisbon, Portugal in 1991. Together they provide a set of comprehensive survey and advanced introduction to problems in fluid mechanics and partial differential equations.