Download Free Microglia In Health And Disease Book in PDF and EPUB Free Download. You can read online Microglia In Health And Disease and write the review.

This book presents a comprehensive toolkit of versatile techniques for studying microglia under different experimental settings along with a brief summary of knowledge, accumulated in microglial research over the last decades. Beginning with recently discovered roles of microglia in health and disease, the volume continues by covering in vitro analyses of microglia, in vivo studies, and “omics” analyses. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Microglia: Methods and Protocols serves as a vital guide to these important cells and an inspiration for scientists interested in expanding our knowledge of their role in the nervous system.
A timely overview covering the three major types of glial cells in the central nervous system - astrocytes, microglia, and oligodendrocytes. New findings on glia biology are overturning a century of conventional thinking about how the brain operates and are expanding our knowledge about information processing in the brain. The book will present recent research findings on the role of glial cells in both healthy function and disease. It will comprehensively cover a broad spectrum of topics while remaining compact in size.
The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 1 offers 48 high level articles devoted mainly to patterning and cell type specification in the developing central and peripheral nervous systems. - Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop - Features leading experts in various subfields as Section Editors and article Authors - All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship - Volume 1 sections include coverage of mechanisms which: control regional specification, regulate proliferation of neuronal progenitors and control differentiation and survival of specific neuronal subtypes, and controlling development of non-neural cells
These past few years have witnessed a revolution in our understanding of microglia, especially since their roles in the healthy central nervous system (CNS) have started to unravel. These cells were shown to actively maintain health, in concert with neurons and other types of CNS cells, providing further insight into their involvement with diseases. Edited by two pioneers in the field, Marie-Ève Tremblay and Amanda Sierra, Microglia in health and disease aims to share with the broader scientific community some of the recent discoveries in microglia research, from a broad perspective, with a collection of 19 chapters from 52 specialists working in 11 countries across 5 continents. To set microglia on the stage, the book begins by explaining briefly who they are, what they do in the healthy and diseased CNS, and how they can be studied. The first section describes in more details their physiological roles in the maturation, function, and plasticity of the CNS, across development, adolescence, adulthood, neuropathic pain, addiction, and aging. The second section focuses on their implication in pathological conditions impairing the quality of life: neurodevelopmental and neuropsychiatric disorders, AIDS, and multiple sclerosis; and in leading causes of death: ischemia and stroke, neurodegenerative diseases, as well as trauma and injury.
The second edition of Neuroimmune Pharmacology bridges the disciplines of neuroscience, immunology and pharmacology from the molecular to clinical levels with particular thought made to engage new research directives and clinical modalities. Bringing together the foremost field authorities from around the world, Neuroimmune Pharmacology will serve as an invaluable resource for the basic and applied scientists of the current decade and beyond.
A thrilling story of scientific detective work and medical potential that illuminates the newly understood role of microglia—an elusive type of brain cell that is vitally relevant to our everyday lives. “The rarest of books: a combination of page-turning discovery and remarkably readable science journalism.”—Mark Hyman, MD, #1 New York Times bestselling author of Food: What the Heck Should I Eat? NAMED ONE OF THE BEST BOOKS OF THE YEAR BY WIRED Until recently, microglia were thought to be helpful but rather boring: housekeeper cells in the brain. But a recent groundbreaking discovery has revealed that they connect our physical and mental health in surprising ways. When triggered—and anything that stirs up the immune system in the body can activate microglia, including chronic stressors, trauma, and viral infections—they can contribute to memory problems, anxiety, depression, and Alzheimer’s. Under the right circumstances, however, microglia can be coaxed back into being angelic healers, able to make brain repairs in ways that help alleviate symptoms and hold the promise to one day prevent disease. With the compassion born of her own experience, award-winning journalist Donna Jackson Nakazawa illuminates this newly understood science, following practitioners and patients on the front lines of treatments that help to “reboot” microglia. In at least one case, she witnesses a stunning recovery—and in others, significant relief from pressing symptoms, offering new hope to the tens of millions who suffer from mental, cognitive, and physical health issues. Hailed as a “riveting,” “stunning,” and “visionary,” The Angel and the Assassin offers us a radically reconceived picture of human health and promises to change everything we thought we knew about how to heal ourselves.
"This volume is a very valuable and much needed contribution." –Quarterly Review of Biology AT LAST - A comprehensive, accessible textbook on glial neurobiology! Glial cells are the most numerous cells in the human brain but for many years have attracted little scientific attention. Neurophysiologists concentrated their research efforts instead, on neurones and neuronal networks because it was thought that they were the key elements responsible for higher brain function. Recent advances, however, indicate this isn’t exactly the case. Not only are astroglial cells the stem elements from which neurones are born, but they also control the development, functional activity and death of neuronal circuits. These ground-breaking developments have revolutionized our understanding of the human brain and the complex interrelationship of glial and neuronal networks in health and disease. Features of this book: an accessible introduction to glial neurobiology including an overview of glial cell function and its active role in neural processes, brain function and nervous system pathology an exploration of all the major types of glial cells including: the astrocytes, oligodendrocytes and microglia of the ACNS and Schwann cells of the peripheral nervous system; the book also presents a broad overview of glial receptors and ion channels an investigation into the role of glial cells in various types of brain diseases including stroke, neurodegenerative diseases such as Alzheimer's, Parkinson's and Alexander's disease, brain oedema, multiple sclerosis and many more a wealth of illustrations, including unique images from the authors' own libraries of images, describing the main features of glial cells Written by two leading experts in the field, Glial Neurobiology provides a concise, authoritative introduction to glial physiology and pathology for undergraduate/postgraduate neuroscience, biomedical, medical, pharmacy, pharmacology, and neurology, neurosurgery and physiology students. It is also an invaluable resource for researchers in neuroscience, physiology, pharmacology and pharmaceutics.
The study of microglial cells has recently gained importance for those researching degeneration and regeneration. Microglia in the regenerating and degenerating CNS supports the assertion that understanding microglial biology could perhaps be pivotal for unraveling the pathogenetic mechanisms that underlie Alzheimer's disease, In addition, microglia are also critical for understanding the sequelae of traumatic brain and spinal cord injury, and for the important post-traumatic repair processes. This book gives an up to date account of the role of microglia in degeneration and regeneration of the nervous system and reviews their cell function and physiology.
Alzheimer's disease was discovered over 100 years ago and still belongs to incurable neurological diseases; its pharmacotherapy is considered to be ineffective. This book presents contemporary views on the genetic, biochemical, and immunological determinants of this disease. This book also concerns the issue of Alzheimer's disease prevention through lifestyle and physical activity. Moreover, it describes the therapies used in Alzheimer's disease to slow the progression of the disease and delay its onset. Subsequently, the authors discuss experimental and clinical trials used now and in the near future. We hope that this book will help the readers to understand the complex mechanism leading to the development of Alzheimer's disease and indicate effective ways to prevent this disorder.
The structure, functions, and interactions of myeloid cells have long been the focus of research and therapeutics development. Yet, much more remains to be discovered about the complex web of relationships that makes up the immune systems of animals. Scientists today are applying genome-wide analyses, single-cell methods, gene editing, and modern imaging techniques to reveal new subclasses of differentiated myeloid cells, new receptors and cytokines, and important interactions among immune cells. In Myeloid Cells in Health and Disease: A Synthesis, Editor Siamon Gordon has assembled an international team of esteemed scientists to provide their perspectives of myeloid cells during innate and adaptive immunity. The book begins by presenting the foundational research of Paul Ehrlich, Elie Metchnikoff, and Donald Metcalf. The following chapters discuss evolution and the life cycles of myeloid cells; specific types of differentiated myeloid cells, including macrophage differentiation; and antigen processing and presentation. The rest of the book is organized by broad topics in immunology, including the recruitment of myeloid and other immune cells following microbial infection the role of myeloid cells in the inflammation process and the repair of damaged tissue the vast arsenal of myeloid cell secretory molecules, including metalloproteinases, tumor necrosis factor, histamine, and perforin receptors and downstream signaling pathways that are activated following ligand-receptor binding roles of myeloid cells during microbial and parasite infections contributions of myeloid cells in atherosclerosis myeloid-derived suppressor cells in tumor development and cancer Myeloid Cells in Health and Disease: A Synthesis will benefit graduate students and researchers in immunology, hematology, microbial pathogenesis, infectious disease, pathology, and pharmacology. Established scientists and physicians in these and related fields will enjoy the book's rich history of myeloid cell research and suggestions for future research directions and potential therapies.