Download Free Microfluidic Hydrodynamic Focusing For Flow Cytometry And Diffusion Mixing Book in PDF and EPUB Free Download. You can read online Microfluidic Hydrodynamic Focusing For Flow Cytometry And Diffusion Mixing and write the review.

"Great book! Excellent compilation. From history of the very early days of flow cytometers to the latest unique unconventional microflow cytometers. From commercialization philosophy to cutting edge engineering designs. From fluid mechanics to optics to electronic circuit considerations. Well balanced and comprehensive."--Shuichi Takayama University of Michigan, USA.
Advances in Microfluidics provides a current snapshot of the field of microfluidics as it relates to a variety of sub-disciplines. The chapters have been divided into three sections: Fluid Dynamics, Technology, and Applications, although a number of the chapters contain aspects that make them applicable to more than one section. It is hoped that this book will serve as a useful resource for recent entrants to the field as well as for established practitioners.
This volume contains an archival record of the NATO Advanced Study Institute on Microfluidics Based Microsystems – Fundamentals and App- cations held in Çe ?me-Izmir, Turkey, August 23–September 4, 2009. ASIs are intended to be high-level teaching activity in scientific and technical areas of current concern. In this volume, the reader may find interesting chapters and various microsystems fundamentals and applications. As the world becomes increasingly concerned with terrorism, early - spot detection of terrorist’s weapons, particularly bio-weapons agents such as bacteria and viruses are extremely important. NATO Public Diplomacy division, Science for Peace and Security section support research, Advanced Study Institutes and workshops related to security. Keeping this policy of NATO in mind, we made such a proposal on Microsystems for security. We are very happy that leading experts agreed to come and lecture in this important NATO ASI. We will see many examples that will show us Microfluidics usefulness for rapid diagnostics following a bioterrorism attack. For the applications in national security and anti-terrorism, microfluidic system technology must meet the challenges. To develop microsystems for security and to provide a comprehensive state-of-the-art assessment of the existing research and applications by treating the subject in considerable depth through lectures from eminent professionals in the field, through discussions and panel sessions are very beneficial for young scientists in the field.
The manipulation of cells and microparticles within microfluidic systems using external forces is valuable for many microscale analytical and bioanalytical applications. Acoustofluidics is the ultrasound-based external forcing of microparticles with microfluidic systems. It has gained much interest because it allows for the simple label-free separation of microparticles based on their mechanical properties without affecting the microparticles themselves. Microscale Acoustofluidics provides an introduction to the field providing the background to the fundamental physics including chapters on governing equations in microfluidics and perturbation theory and ultrasound resonances, acoustic radiation force on small particles, continuum mechanics for ultrasonic particle manipulation, and piezoelectricity and application to the excitation of acoustic fields for ultrasonic particle manipulation. The book also provides information on the design and characterization of ultrasonic particle manipulation devices as well as applications in acoustic trapping and immunoassays. Written by leading experts in the field, the book will appeal to postgraduate students and researchers interested in microfluidics and lab-on-a-chip applications.
The successful implementation of greener chemical processes relies not only on the development of more efficient catalysts for synthetic chemistry but also, and as importantly, on the development of reactor and separation technologies which can deliver enhanced processing performance in a safe, cost-effective and energy efficient manner. Process intensification has emerged as a promising field which can effectively tackle the challenges of significant process enhancement, whilst also offering the potential to diminish the environmental impact presented by the chemical industry. Following an introduction to process intensification and the principles of green chemistry, this book presents a number of intensified technologies which have been researched and developed, including case studies to illustrate their application to green chemical processes. Topics covered include: • Intensified reactor technologies: spinning disc reactors, microreactors, monolith reactors, oscillatory flow reactors, cavitational reactors • Combined reactor/separator systems: membrane reactors, reactive distillation, reactive extraction, reactive absorption • Membrane separations for green chemistry • Industry relevance of process intensification, including economics and environmental impact, opportunities for energy saving, and practical considerations for industrial implementation. Process Intensification for Green Chemistry is a valuable resource for practising engineers and chemists alike who are interested in applying intensified reactor and/or separator systems in a range of industries to achieve green chemistry principles.
The fields of microfluidics and BioMEMS are significantly impacting cell biology research and applications through the application of engineering solutions to human disease and health problems. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. This new professional reference applies the techniques of microsystems to cell culture applications. The authors provide a thoroughly practical guide to the principles of microfluidic device design and operation and their application to cell culture techniques. The resulting book is crammed with strategies and techniques that can be immediately deployed in the lab. Equally, the insights into cell culture applications will provide those involved in traditional microfluidics and BioMEMS with an understanding of the specific demands and opportunities presented by biological applications. The goal is to guide new and interested researchers and technology developers to the important areas and state-of-the-practice strategies that will enhance the efficiency and value of their technologies, devices and biomedical products. - Provides insights into the design and development of microfluidic systems with a specific focus on cell culture applications - Focuses on strategies and techniques for the design and fabrication of microfluidic systems and devices for cell culture - Provides balanced coverage of microsystems engineering and bioengineering
Combining robotics with nanotechnology, this ready reference summarizes the fundamentals and emerging applications in this fascinating research field. This is the first book to introduce tools specifically designed and made for manipulating micro- and nanometer-sized objects, and presents such examples as semiconductor packaging and clinical diagnostics as well as surgery. The first part discusses various topics of on-chip and device-based micro- and nanomanipulation, including the use of acoustic, magnetic, optical or dielectrophoretic fields, while surface-driven and high-speed microfluidic manipulation for biophysical applications are also covered. In the second part of the book, the main focus is on microrobotic tools. Alongside magnetic micromanipulators, bacteria and untethered, chapters also discuss silicon nano- and integrated optical tweezers. The book closes with a number of chapters on nanomanipulation using AFM and nanocoils under optical and electron microscopes. Exciting images from the tiniest robotic systems at the nano-level are used to illustrate the examples throughout the work. A must-have book for readers with a background ranging from engineering to nanotechnology.
The market demand for skills, knowledge and adaptability have positioned robotics to be an important field in both engineering and science. One of the most highly visible applications of robotics has been the robotic automation of many industrial tasks in factories. In the future, a new era will come in which we will see a greater success for robotics in non-industrial environments. In order to anticipate a wider deployment of intelligent and autonomous robots for tasks such as manufacturing, healthcare, ent- tainment, search and rescue, surveillance, exploration, and security missions, it is essential to push the frontier of robotics into a new dimension, one in which motion and intelligence play equally important roles. The 2010 International Conference on Intelligent Robotics and Applications (ICIRA 2010) was held in Shanghai, China, November 10–12, 2010. The theme of the c- ference was “Robotics Harmonizing Life,” a theme that reflects the ever-growing interest in research, development and applications in the dynamic and exciting areas of intelligent robotics. These volumes of Springer’s Lecture Notes in Artificial Intel- gence and Lecture Notes in Computer Science contain 140 high-quality papers, which were selected at least for the papers in general sessions, with a 62% acceptance rate Traditionally, ICIRA 2010 holds a series of plenary talks, and we were fortunate to have two such keynote speakers who shared their expertise with us in diverse topic areas spanning the rang of intelligent robotics and application activities.
The analysis and sorting of large numbers of cells with a fluorescence-activated cell sorter (FACS) was first achieved some 30 years ago. Since then, this technology has been rapidly developed and is used today in many laboratories. A Springer Lab Manual Review of the First Edition: "This is a most useful volume which will be a welcome addition for personal use and also for laboratories in a wide range of disciplines. Highly recommended." CYTOBIOS
This book addresses Lab-on-a-Chip devices. It focuses on microfluidic technologies that have emerged in the past decade. Coverage presents a comprehensive listing of the most promising microfluidic technologies in the Lab-on-a-Chip field. It also details technologies that can be viewed as toolboxes needed to set up complex Lab-on-a-Chip systems.