Download Free Microcontrollers In Practice Book in PDF and EPUB Free Download. You can read online Microcontrollers In Practice and write the review.

Stressing common characteristics and real applications of the most used microcontrollers, this practical guide provides readers with hands-on knowledge of how to implement three families of microcontrollers (HC11, AVR, and 8051). Unlike the rest of the ocean of literature on individual chips, Microcontrollers in Practice supplies side-by-side comparisons and an overview that treats the systems as resources available for implementation. Packed with hundreds of practical examples and exercises to foster mastery of concepts and details, the guide also includes several extended projects. By treating the less expensive 8-bit and RISC microcontrollers, this information-dense manual equips students and home-experimenters with the know-how to put these devices into operation.
Stressing common characteristics and real applications of the most used microcontrollers, this practical guide provides readers with hands-on knowledge of how to implement three families of microcontrollers (HC11, AVR, and 8051). Unlike the rest of the ocean of literature on individual chips, Microcontrollers in Practice supplies side-by-side comparisons and an overview that treats the systems as resources available for implementation. Packed with hundreds of practical examples and exercises to foster mastery of concepts and details, the guide also includes several extended projects. By treating the less expensive 8-bit and RISC microcontrollers, this information-dense manual equips students and home-experimenters with the know-how to put these devices into operation.
Interested in developing embedded systems? Since they donâ??t tolerate inefficiency, these systems require a disciplined approach to programming. This easy-to-read guide helps you cultivate a host of good development practices, based on classic software design patterns and new patterns unique to embedded programming. Learn how to build system architecture for processors, not operating systems, and discover specific techniques for dealing with hardware difficulties and manufacturing requirements. Written by an expert whoâ??s created embedded systems ranging from urban surveillance and DNA scanners to childrenâ??s toys, this book is ideal for intermediate and experienced programmers, no matter what platform you use. Optimize your system to reduce cost and increase performance Develop an architecture that makes your software robust in resource-constrained environments Explore sensors, motors, and other I/O devices Do more with less: reduce RAM consumption, code space, processor cycles, and power consumption Learn how to update embedded code directly in the processor Discover how to implement complex mathematics on small processors Understand what interviewers look for when you apply for an embedded systems job "Making Embedded Systems is the book for a C programmer who wants to enter the fun (and lucrative) world of embedded systems. Itâ??s very well writtenâ??entertaining, evenâ??and filled with clear illustrations." â??Jack Ganssle, author and embedded system expert.
Interfacing PIC Microcontrollers, 2nd Edition is a great introductory text for those starting out in this field and as a source reference for more experienced engineers. Martin Bates has drawn upon 20 years of experience of teaching microprocessor systems to produce a book containing an excellent balance of theory and practice with numerous working examples throughout. It provides comprehensive coverage of basic microcontroller system interfacing using the latest interactive software, Proteus VSM, which allows real-time simulation of microcontroller based designs and supports the development of new applications from initial concept to final testing and deployment. - Comprehensive introduction to interfacing 8-bit PIC microcontrollers - Designs updated for current software versions MPLAB v8 & Proteus VSM v8 - Additional applications in wireless communications, intelligent sensors and more
This textbook introduces readers to digital signal processing fundamentals using Arm Cortex-M based microcontrollers as demonstrator platforms. It covers foundational concepts, principles and techniques such as signals and systems, sampling, reconstruction and anti-aliasing, FIR and IIR filter design, transforms, and adaptive signal processing.
PIC in Practice is a graded course based around the practical use of the PIC microcontroller through project work. Principles are introduced gradually, through hands-on experience, enabling students to develop their understanding at their own pace. Dave Smith has based the book on his popular short courses on the PIC for professionals, students and teachers at Manchester Metropolitan University. The result is a graded text, formulated around practical exercises, which truly guides the reader from square one. The book can be used at a variety of levels and the carefully graded projects make it ideal for colleges, schools and universities. Newcomers to the PIC will find it a painless introduction, whilst electronics hobbyists will enjoy the practical nature of this first course in microcontrollers. PIC in Practice introduces applications using the popular 16F84 device as well as the 16F627, 16F877, 12C508, 12C629 and 12C675. In this new edition excellent coverage is given to the 16F818, with additional information on writing and documenting software. - Gentle introduction to using PICs for electronic applications - Principles and programming introduced through graded projects - Thoroughly up-to-date with new chapters on the 16F818 and writing and documenting programs
Primarily intended for diploma, undergraduate and postgraduate students of electronics, electrical, mechanical, information technology and computer engineering, this book offers an introduction to microprocessors and microcontrollers. The book is designed to explain basic concepts underlying programmable devices and their interfacing. It provides complete knowledge of the Intel’s 8085 and 8086 microprocessors and 8051 microcontroller, their architecture, programming and concepts of interfacing of memory, IO devices and programmable chips. The text has been organized in such a manner that a student can understand and get well-acquainted with the subject, independent of other reference books and Internet sources. It is of greater use even for the AMIE and IETE students—those who do not have the facility of classroom teaching and laboratory practice. The book presents an integrated treatment of the hardware and software aspects of the 8085 and 8086 microprocessors and 8051 microcontroller. Elaborated programming, solved examples on typical interfacing problems, and a useful set of exercise problems in each chapter serve as distinguishing features of the book.
Combines the theory and the practice of applied digital control This book presents the theory and application of microcontroller based automatic control systems. Microcontrollers are single-chip computers which can be used to control real-time systems. Low-cost, single chip and easy to program, they have traditionally been programmed using the assembly language of the target processor. Recent developments in this field mean that it is now possible to program these devices using high-level languages such as BASIC, PASCAL, or C. As a result, very complex control algorithms can be developed and implemented on the microcontrollers. Presenting a detailed treatment of how microcontrollers can be programmed and used in digital control applications, this book: * Introduces the basic principles of the theory of digital control systems. * Provides several working examples of real working mechanical, electrical and fluid systems. * Covers the implementation of control algorithms using microcontrollers. * Examines the advantages and disadvantages of various realization techniques. * Describes the use of MATLAB in the analysis and design of control systems. * Explains the sampling process, z-transforms, and the time response of discrete-time systems in detail. Practising engineers in industry involved with the design and implementation of computer control systems will find Microcontroller Based Applied Digital Control an invaluable resource. In addition, researchers and students in control engineering and electrical engineering will find this book an excellent research tool.
Introduction to Microcontrollers is a comprehensive, introductory text/reference for electrical and computer engineers and students with little experience with a high-level programming language. It systematically teaches the programming of a microcontroller in assembly language, as well as C and C++. This books also covers the principles of good programming practice through top-down design and the use of data structures. It is suitable as an introductory text for a first course on microcomputers that demonstrates what a small computer can do. - Shows how a computer executes instructions; - Shows how a high-level programming language converts to assembler language; - Shows how a microcontroller is interfaced to the outside world; - Hundreds of examples, experiments, "brain-teasers" and motivators; - More than 20 exercises at the end of each chapter
Atmel's AVR microcontrollers are the chips that power Arduino, and are the go-to chip for many hobbyist and hardware hacking projects. In this book you'll set aside the layers of abstraction provided by the Arduino environment and learn how to program AVR microcontrollers directly. In doing so, you'll get closer to the chip and you'll be able to squeeze more power and features out of it. Each chapter of this book is centered around projects that incorporate that particular microcontroller topic. Each project includes schematics, code, and illustrations of a working project. Program a range of AVR chips Extend and re-use other people’s code and circuits Interface with USB, I2C, and SPI peripheral devices Learn to access the full range of power and speed of the microcontroller Build projects including Cylon Eyes, a Square-Wave Organ, an AM Radio, a Passive Light-Sensor Alarm, Temperature Logger, and more Understand what's happening behind the scenes even when using the Arduino IDE