Download Free Microbiology Of Landfill Sites Book in PDF and EPUB Free Download. You can read online Microbiology Of Landfill Sites and write the review.

This book was originally published in 1990 and was the first text to consider the definitive fundamental science of landfill biotechnology. Since then, major research initiatives, particularly in the U.K. and South Africa, have resulted in considerable advancement in our knowledge of landfill microbiology. The Second Edition details this progress. Text considers the latest findings in landfill leachate treatment, co-disposal and fundamental microbiology. It brings together the expertise of the immediate complementary, but often disparate disciplines of soil science, environmental engineering, applied mathematics, and land reclamation and focuses on the common goal of the scientific design and management of landfill sites. The book also includes effective laboratory models and selected approaches.
Interest in solid waste disposal has been growing since the early 1960s, when researchers emphasized the potential for solid waste to harbor pathogenic microorganisms. Since then, society has become more interested in the environmental impacts of solid waste treatment and disposal, and how biological processes are used to minimize these impacts. This new text provides a basic understanding of the unique microbial ecosystems associated with the decomposition of municipal solid waste (MSW). It addresses the challenges of sampling and assaying microbial activities in MSW and describes preferred methods. The decomposition of MSW under anaerobic conditions in landfills and digestors is described, as well as under aerobioconditions during composting. The Microbiology of Solid Wastes discusses the need to consider MSW as an integrated system of collection, recycling, treatment, and disposal. A better understanding of solid waste microbiology will contribute to safe and economical solid waste management. Microbiologists, environmental engineers, and solid waste managers will all find this a useful reference.
This book was originally published in 1990 and was the first text to consider the definitive fundamental science of landfill biotechnology. Since then, major research initiatives, particularly in the U.K. and South Africa, have resulted in considerable advancement in our knowledge of landfill microbiology. The Second Edition details this progress. Text considers the latest findings in landfill leachate treatment, co-disposal and fundamental microbiology. It brings together the expertise of the immediate complementary, but often disparate disciplines of soil science, environmental engineering, applied mathematics, and land reclamation and focuses on the common goal of the scientific design and management of landfill sites. The book also includes effective laboratory models and selected approaches.
The most definitive manual of microbes in air, water, and soil and their impact on human health and welfare. • Incorporates a summary of the latest methodology used to study the activity and fate of microorganisms in various environments. • Synthesizes the latest information on the assessment of microbial presence and microbial activity in natural and artificial environments. • Features a section on biotransformation and biodegradation. • Serves as an indispensable reference for environmental microbiologists, microbial ecologists, and environmental engineers, as well as those interested in human diseases, water and wastewater treatment, and biotechnology.
The remediation of environmental pollutants has become a relevant topic within the field of waste management. Advances in biological approaches are a potential tool for contamination and pollution control. The Handbook of Research on Microbial Tools for Environmental Waste Management is a critical scholarly resource that explores the advanced biological approaches that are used as remediation for pollution cleanup processes. Featuring coverage on a broad range of topics such as biodegradation, microbial dehalogenation, and pollution controlling treatments, this book is geared towards environmental scientists, biologists, policy makers, graduate students, and scholars seeking current research on environmental engineering and green technologies.
Environmental and Agricultural Microbiology Uniquely reveals the state-of-the-art microbial research/advances in the environment and agriculture fields Environmental and Agricultural Microbiology: Applications for Sustainability is divided into two parts which embody chapters on sustenance and life cycles of microorganisms in various environmental conditions, their dispersal, interactions with other inhabited communities, metabolite production, and reclamation. Though books pertaining to soil & agricultural microbiology/environmental biotechnology are available, there is a dearth of comprehensive literature on the behavior of microorganisms in the environmental and agricultural realm. Part 1 includes bioremediation of agrochemicals by microalgae, detoxification of chromium and other heavy metals by microbial biofilm, microbial biopolymer technology including polyhydroxyalkanoates (PHAs) and polyhydroxybutyrates (PHB), their production, degradability behaviors, and applications. Biosurfactants production and their commercial importance are also systematically represented in this part. Part 2 having 9 chapters, facilitates imperative ideas on approaches for sustainable agriculture through functional soil microbes, next-generation crop improvement strategies via rhizosphere microbiome, production and implementation of liquid biofertilizers, mitigation of methane from livestock, chitinases from microbes, extremozymes, an enzyme from extremophilic microorganism and their relevance in current biotechnology, lithobiontic communities, and their environmental importance, have all been comprehensively elaborated. In the era of sustainable energy production, biofuel and other bioenergy products play a key role, and their production from microbial sources are frontiers for researchers. The final chapter unveils the importance of microbes and their consortia for management of solid waste in amalgamation with biotechnology Audience The book will be read by environmental microbiologists, biotechnologists, chemical and agricultural engineers.
Interest in solid waste disposal has been growing since the early 1960s, when researchers emphasized the potential for solid waste to harbor pathogenic microorganisms. Since then, society has become more interested in the environmental impacts of solid waste treatment and disposal, and how biological processes are used to minimize these impacts. This new text provides a basic understanding of the unique microbial ecosystems associated with the decomposition of municipal solid waste (MSW). It addresses the challenges of sampling and assaying microbial activities in MSW and describes preferred methods. The decomposition of MSW under anaerobic conditions in landfills and digestors is described, as well as under aerobioconditions during composting. The Microbiology of Solid Wastes discusses the need to consider MSW as an integrated system of collection, recycling, treatment, and disposal. A better understanding of solid waste microbiology will contribute to safe and economical solid waste management. Microbiologists, environmental engineers, and solid waste managers will all find this a useful reference.
Sanitary Landfilling: Process, Technology, and Environmental Impact is a collection of essays that discusses the role of landfilling in solid waste management. The book presents the approach in the principles of landfilling and the basic biochemical processes in landfills. The text describes the landfill hydrology and leachate production. It discusses the design and construction of liner systems and the surface capping with natural liner materials. The section that follows describes the soil and refuse stability in sanitary landfills. The book will provide valuable insights for engineers, environmentalists, students, and researchers in the field of solid waste management.
This book places the main actors in environmental microbiology, namely the microorganisms, on center stage. Using the modern approach of 16S ribosomal RNA, the book looks at the taxonomy of marine and freshwater bacteria, fungi, protozoa, algae, viruses, and the smaller aquatic animals such as nematodes and rotifers, as well as at the study of unculturable aquatic microorganisms (metagenomics). The peculiarities of water as an environment for microbial growth, and the influence of aquatic microorganisms on global climate and global recycling of nitrogen and sulphur are also examined. The pollution of water is explored in the context of self-purification of natural waters. Modern municipal water purification and disease transmission through water are discussed. Alternative methods for solid waste disposal are related to the economic capability of a society. Viruses are given special attention. By focusing on the basics, this primer will appeal across a wide range of disciplines.
Composting is increasingly used as a recycling technology for organic wastes. Knowledge on the composition and activities of compost microbial communities has so far been based on traditional methods. New molecular and physiological tools now offer new insights into the "black box" of decaying material. An unforeseen diversity of microorganisms are involved in composting, opening up an enormous potential for future process and product improvements. In this book, the views of scientists, engineers and end-users on compost production, process optimisation, standardisation and product application are presented.