Download Free Microbiological Aspects Of Biofilms And Drinking Water Book in PDF and EPUB Free Download. You can read online Microbiological Aspects Of Biofilms And Drinking Water and write the review.

The development of biofilms and their role in public health - particularly drinking water - is often overlooked. Ideal for anyone interested in water related issues, Microbiological Aspects of Biofilms and Drinking Water presents an overview of the public health effects associated with drinking water. It highlights the microbiological aspects relat
The second edition of Microbiology of Waterborne Diseases describes the diseases associated with water, their causative agents and the ways in which they gain access to water systems. The book is divided into sections covering bacteria, protozoa, and viruses. Other sections detail methods for detecting and identifying waterborne microorganisms, and the ways in which they are removed from water, including chlorine, ozone, and ultraviolet disinfection. The second edition of this handbook has been updated with information on biofilms and antimicrobial resistance. The impact of global warming and climate change phenomena on waterborne illnesses are also discussed. This book serves as an indispensable reference for public health microbiologists, water utility scientists, research water pollution microbiologists environmental health officers, consultants in communicable disease control and microbial water pollution students. Focuses on the microorganisms of most significance to public health, including E. coli, cryptosporidium, and enterovirus Highlights the basic microbiology, clinical features, survival in the environment, and gives a risk assessment for each pathogen Contains new material on antimicrobial resistance and biofilms Covers drinking water and both marine and freshwater recreational bathing waters
The development of biofilms and their role in public health - particularly drinking water - is often overlooked. Ideal for anyone interested in water related issues, Microbiological Aspects of Biofilms and Drinking Water presents an overview of the public health effects associated with drinking water. It highlights the microbiological aspects relating to the development of biofilms. The first four chapters focus on the state of the water supply. The authors review methods for studying the epidemiological spread of waterborne infections and those used in surveillance and control of pathogenic microbes. He includes the methods used for the detection of pathogens of public health importance in drinking water. In the subsequent chapters the authors pay close attention to biofilm development within drinking water systems, underlining the public health threat. They cover the microbes important to public health and include the methods used to detect biofilms. In conclusion they review the methods involved in biofilm control - both conventional and biocidal treatments. Overall, Microbiological Aspects of Biofilms and Drinking Water provides a snapshot of public health and the water supply. It covers the future of drinking water and its associated health hazards and provides a deeper understanding of biofilms and how they provide a safe haven for pathogens and water related diseases.
With an increasing population, use of new and diverse chemicals that can enter the water supply, and emergence of new microbial pathogens, the U.S. federal government is faced with a regulatory dilemma: Where should it focus its attention and limited resources to ensure safe drinking water supplies for the future? Identifying Future Drinking Water Contaminants is based on a 1998 workshop on emerging drinking water contaminants. It includes a dozen papers that were presented on new and emerging microbiological and chemical drinking water contaminants, associated analytical and water treatment methods for their detection and removal, and existing and proposed environmental databases to assist in their proactive identification and regulation. The papers are preceded by a conceptual approach and related recommendations to EPA for the periodic creation of future Drinking Water Contaminant Candidate Lists (CCLsâ€"produced every five yearsâ€"include currently unregulated chemical and microbiological substances that are known or anticipated to occur in public water systems and that may pose health risks).
Maintaining the microbial quality in distribution systems and connected installations remains a challenge for the water supply companies all over the world, despite many years of research. This book identifies the main concerns and knowledge gaps related to regrowth and stimulates cooperation in future research. Microbial Growth in Drinking Water Supplies provides an overview of the regrowth issue in different countries and the water quality problems related to regrowth. The book assesses the causes of regrowth in drinking water and the prevention of regrowth by water treatment and distribution. Editors: Dirk van der Kooij and Paul W.J.J. van der Wielen, KWR Watercycle Research Institute, The Netherlands
The microbiology of drinking water remains an important worldwide concern despite modem progress in science and engineering. Countries that are more technologically advanced have experienced a significant reduction in water borne morbidity within the last 100 years: This reduction has been achieved through the application of effective technologies for the treatment, disinfec tion, and distribution of potable water. However, morbidity resulting from the ingestion of contaminated water persists globally, and the available ep idemiological evidence (Waterborne Diseases in the United States, G. F. Craun, ed. , 1986, CRC Press) demonstrates a dramatic increase in the number of waterborne outbreaks and individual cases within the United States since the mid-1960s. In addition, it should also be noted that the incidence of water borne outbreaks of unknown etiology and those caused by "new" pathogens, such as Campylobaeter sp. , is also increasing in the United States. Although it might be debated whether these increases are real or an artifact resulting from more efficient reporting, it is clear that waterborne morbidity cannot be ignored in the industrialized world. More significantly, it represents one of the most important causes of illness within developing countries. Approxi mately one-half the world's population experiences diseases that are the direct consequence of drinking polluted water. Such illnesses are the primary cause of infant mortality in many Third World countries.
Protecting and maintaining water distributions systems is crucial to ensuring high quality drinking water. Distribution systems-consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances-carry drinking water from a centralized treatment plant or well supplies to consumers' taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management challenge from both an operational and public health standpoint. Recent data on waterborne disease outbreaks suggest that distribution systems remain a source of contamination that has yet to be fully addressed. This report evaluates approaches for risk characterization and recent data, and it identifies a variety of strategies that could be considered to reduce the risks posed by water-quality deteriorating events in distribution systems. Particular attention is given to backflow events via cross connections, the potential for contamination of the distribution system during construction and repair activities, maintenance of storage facilities, and the role of premise plumbing in public health risk. The report also identifies advances in detection, monitoring and modeling, analytical methods, and research and development opportunities that will enable the water supply industry to further reduce risks associated with drinking water distribution systems.
Recent Trends in Biofilm Science and Technology helps researchers working on fundamental aspects of biofilm formation and control conduct biofilm studies and interpret results. The book provides a remarkable amount of knowledge on the processes that regulate biofilm formation, the methods used, monitoring characterization and mathematical modeling, the problems/advantages caused by their presence in the food industry, environment and medical fields, and the current and emergent strategies for their control. Research on biofilms has progressed rapidly in the last decade due to the fact that biofilms have required the development of new analytical tools and new collaborations between biologists, engineers and mathematicians. - Presents an overview of the process of biofilm formation and its implications - Provides a clearer understanding of the role of biofilms in infections - Creates a foundation for further research on novel control strategies - Updates readers on the remarkable amount of knowledge on the processes that regulate biofilm formation
Heterotrophic Plate Counts and Drinking-water Safety provides a critical assessment of the role of the Heterotrophic Plate Count (HPC) measurement in drinking water quality management. It was developed from an Expert workshop of 32 scientists convened by the World Health Organization and the WHO/NSF International Collaborating Centre for Drinking Water Safety and Treatment in Geneva, Switzerland. Heterotrophs are organisms, including bacteria, yeasts and moulds, that require an external source of organic carbon for growth. The HPC test (or Standard Plate Count), applied in many variants, is the internationally accepted test for measuring the hetrotrophic microorganism population in drinking water, and also other media. It measures only a fraction of the microorganisms actually present and does not distinguish between pathogens and non-pathogens. High levels of microbial growth can affect the taste and odor of drinking water and may indicate the presence of nutrients and biofilms which could harbor pathogens, as well as the possibility that some event has interfered with the normal production of the drinking water. HPC counts also routinely increase in water that has been treated by an in-line device such as a carbon filter or softener, in water-dispensing devices and in bottled waters and indeed in all water that has suitable nutrients, does not have a residual disinfectant, and is kept under sufficient conditions. There is debate among health professionals as to the need, utility or quantitative basis for health-based standards or guidelines relating to HPC-measured regrowth in drinking water. The issues that were addressed in this work include: the relationship between HPC in drinking water (including that derived from in-line treatment systems, dispensers and bottled water) and health risks for the general public the role of HPC as an indirect indicator or index for pathogens of concern in drinking water the role of HPC in assessing the efficacy and proper functioning of water treatment and supply processes the relationship between HPC and the aesthetic acceptability of drinking water. Heterotrophic Plate Counts and Drinking-water Safety provides valuable information on the utility and the limitations of HPC data in the management and operation of piped water systems as well as other means of providing drinking water to the public. It is of particular value to piped public water suppliers and bottled water suppliers, manufacturers and users of water treatment and transmission equipment and inline treatment devices, water engineers, sanitary and clinical microbiologists, and national and local public health officials and regulators of drinking water quality.
Hidden problems, buried deep in the pipe networks of water distribution systems, are very serious potential threats to water quality. Microbial Quality of Water Supply in Distribution Systems outlines the processes and issues related to the degradation of water quality upon passage through networks of pipes, storage reservoirs, and standpipes on its way to the consumer. The risks associated with biofilm accumulation, bacteria, and other contaminants are discussed in great detail. In addition to its excellent microbiological coverage of organisms in drinking water and biofilms in distribution systems, Microbial Quality of Water Supply in Distribution Systems provides clear treatments of the technical and public communication issues most commonly affecting the quality of water and water supply systems. The inclusion of numerous case histories in this new book makes it a complete reference source for anyone concerned with water quality and water distribution systems.