Download Free Microbial Stress Tolerance For Biofuels Book in PDF and EPUB Free Download. You can read online Microbial Stress Tolerance For Biofuels and write the review.

The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions.
Microbial Services in Restoration Ecology describes the role of microbial resources and their beneficial services in soil fertility and restoration of degraded ecosystems. The role of microbial interactions with crop plants which benefit agricultural productivity is also discussed. The book also includes significant advances in microbial based bio-pesticide production and strategies for high-density bio-inoculant cultivation to improve stress survivability of crop plants. This work provides next-generation molecular technologies for exploring complex microbial secondary metabolites and metabolic regulation in viability of plant–microbe interactions. - Describes the role of microbial resources and their beneficial services in soil fertility and restoration of degraded ecosystems - Discusses the role of microbial interactions with crop plants and how it benefits of agricultural productivity - Includes significant advances in microbial based bio-pesticide production and strategies for high-density bio-inoculant cultivation to improve stress survivability of crop plants provides next-generation molecular technologies for exploring complex microbial secondary metabolites and metabolic regulation in viability of plant–microbe interactions
The book provides an overview on various microorganisms and their industrialization in energy conversion, such as ethanol fermentation, butanol fermentation, biogas fermentation and fossil energy conversion. It also covers microbial oil production, hydrogen production and electricity generation. The content is up to date and suits well for both researchers and industrial audiences.
This title includes a number of Open Access chapters.The world needs renewable and clean forms of energy. Biofuels offer an alternative to fossil fuels, but first-generation biofuels had many challenges to be overcome. One strategy that second-generation biofuels are employing is microbial technology.This compendium volume gathers together recent i
This book explores microbial lifestyles, biochemical adaptations, and trophic interactions occurring in extreme environments. By summarizing the latest findings in the field it provides a valuable reference for future studies. Spark ideas for biotechnological and commercial exploitation of microbiomes at the extremes of life are presented. Chapters on viruses complement this highly informative book. In a vertical journey through the microbial biosphere it covers aspects of cold environments, hot environments, extreme saline environments, and extreme pressure environments, and more. From the deep sea, through polar deserts, up to the clouds in the air - the diversity of microbial life in all habitats is described, explored, and comprehensively reviewed. Possible biotechnical applications are discussed. This book aims to provide a useful reference for those who want to start a research program in extreme microbiology and, hopefully, inspire new research directions.
The global mandate for safer, cleaner and renewable energy has accelerated research on microbes that convert carbon sources to end-products serving as biofuels of the so-called first, second or third generation – e.g., bioethanol or biodiesel derived from starchy, sugar-rich or oily crops; bioethanol derived from composite lignocellulosic biomass; and biodiesels extracted from oil-producing algae and cyanobacteria, respectively. Recent advances in ‘omics’ applications are beginning to cast light on the biological mechanisms underlying biofuel production. They also unravel mechanisms important for organic solvent or high-added-value chemical production, which, along with those for fuel chemicals, are significant to the broader field of Bioenergy. The Frontiers in Microbial Physiology Research Topic that led to the current e-book publication, operated from 2013 to 2014 and welcomed articles aiming to better understand the genetic basis behind Bioenergy production. It invited genetic studies of microbes already used or carrying the potential to be used for bioethanol, biobutanol, biodiesel, and fuel gas production, as also of microbes posing as promising new catalysts for alternative bioproducts. Any research focusing on the systems biology of such microbes, gene function and regulation, genetic and/or genomic tool development, metabolic engineering, and synthetic biology leading to strain optimization, was considered highly relevant to the topic. Likewise, bioinformatic analyses and modeling pertaining to gene network prediction and function were also desirable and therefore invited in the thematic forum. Upon e-book development today, we, at the editorial, strongly believe that all articles presented herein – original research papers, reviews, perspectives and a technology report – significantly contribute to the emerging insights regarding microbial-derived energy production. Katherine M. Pappas, 2016
Microbial Biotechnology for Bioenergy presents the new and emerging biotechnological and microbiological approaches in bioenergy and their economic, social, and environmental implications. Using the latest global data and statistics, it analyses how bioenergy technology improves quality of life by reducing air and water pollution and mitigates energy dependence by creating renewable resources in local communities. The book is formed of three sections; Section 1 addresses the "Sources, Challenges, and Environmental Views of Bioenergy and includes an overview of bioenergy, global statistics and projections for future bioenergy development, the role of biotechnology and bioprocesses in bioenergy, feedstock sources, challenges, decarbonisation, and emerging innovations and technologies. Section 2 "Yesterday, Today, and Tomorrow: Innovations of Bioenergy examines the vast topics of biotechnology and microbiology for bioenergy, reviewing both the present day state-of-the-art and future potential. Readers will find dedicated chapters on bioconversion of biomass energy and biological residues, the role of microbes, the potential of organic waste to provide bioenergy, the biotechnology of biofuels such as bioethanol, biodiesel, and biohydrogen, the sustainability of cellulosic ethanol energy and artificial photosynthesis, Power-to-X and integrating energy storage innovations, and the sustainability of microbial fuel cells. Finally, Section 3 explores the policies and environmental aspects of bioenergy, providing a global perspective on the current and future impact of bioenergy, including global projections based on present day global statistics. Microbial Biotechnology for Bioenergy is a valuable reference for biotechnologists, environmental engineers, and microbiologists interested in bioenergy, and includes explanations of the fundamentals and key concepts to ensure it is accessible to students as well as researchers and professionals. - Critically reviews past, present, and future bioenergy technologies, including global statistics, policies, and emerging approaches - Highlights opportunities to improve quality of life and mitigate energy dependence, reducing air/water pollution and creating renewable resources in local communities - Explores environmental benefits of incorporating microbial remediation into bioenergy production
Biotechnology for Biofuel Production and Optimization is the compilation of current research findings that cover the entire process of biofuels production from manipulation of genes and pathways to organisms and renewable feedstocks for efficient biofuel production as well as different cultivation techniques and process scale-up considerations. This book captures recent breakthroughs in the interdisciplinary areas of systems and synthetic biology, metabolic engineering, and bioprocess engineering for renewable, cleaner sources of energy. - Describes state-of-the-art engineering of metabolic pathways for the production of a variety of fuel molecules - Discusses recent advances in synthetic biology and metabolic engineering for rational design, construction, evaluation of novel pathways and cell chassis - Covers genome engineering technologies to address complex biofuel-tolerant phenotypes for enhanced biofuel production in engineered chassis - Presents the use of novel microorganisms and expanded substrate utilization strategies for production of targeted fuel molecules - Explores biohybrid methods for harvesting bioenergy - Discusses bioreactor design and optimization of scale-up
Microbiome Under Changing Climate: Implications and Solutions presents the latest biotechnological interventions for the judicious use of microbes to ensure optimal agricultural yield. Summarizing aspects of vulnerability, adaptation and amelioration of climate impact, this book provides an important resource for understanding microbes, plants and soil in pursuit of sustainable agriculture and improved food security. It emphasizes the interaction between climate and soil microbes and their potential role in promoting advanced sustainable agricultural solutions, focusing on current research designed to use beneficial microbes such as plant growth promoting microorganisms, fungi, endophytic microbes, and more. Changes in climatic conditions influence all factors of the agricultural ecosystem, including adversely impacting yield both in terms of quantity and nutritional quality. In order to develop resilience against climatic changes, it is increasingly important to understand the effect on the native micro-flora, including the distribution of methanogens and methanotrophs, nutrient content and microbial biomass, among others. - Demonstrates the impact of climate change on secondary metabolites of plants and potential responses - Incorporates insights on microflora of inhabitant soil - Explores mitigation processes and their modulation by sustainable methods - Highlights the role of microbial technologies in agricultural sustainability
Concerns over dwindling fossil fuel reserves and impending climate changes have focused attention worldwide on the need to discover alternative, sustainable energy sources and fuels. Biofuels, already produced on a massive industrial scale, are seen as one answer to these problems. However, very real concerns over the effects of biofuel production on food supplies, with some of ht recent increases in worldwide food costs attributable to biofuel production, have lead to the realization that new, non-food substrates for biofuel production must be bought online. This book is an authoritative, comprehensive, up-to-date review of the various options under development for the production of advanced biofuels as alternative energy sources. A general overview and introductory chapters for each section place the field in the context as well as provide essential basic notions for the more general reader. Accomplished, internationally recognized experts carrying out research on individual focus areas contribute specific technical chapters detailing present progress and future prospects.