Download Free Microbial Ribonucleases Book in PDF and EPUB Free Download. You can read online Microbial Ribonucleases and write the review.

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
This book focuses on the regulation of transcription and translation in Archaea and arising insights into the evolution of RNA processing pathways. From synthesis to degradation and the implications of gene expression, it presents the current state of knowledge on archaeal RNA biology in 13 chapters. Topics covered include the modification and maturation of RNAs, the function of small non-coding RNAs and the CRISPR-Cas defense system. While Archaea have long been considered exotic microbial extremophiles, they are now increasingly being recognized as important model microorganisms for the study of molecular mechanisms conserved across the three domains of life, and with regard to the relevance of similarities and differences to eukaryotes and bacteria. This unique book offers a valuable resource for all readers interested in the regulation of gene expression in Archaea and RNA metabolism in general.
Concisely discussing the application of high throughput analysis to move forward our understanding of microbial principles, Metagenomics for Microbiology provides a solid base for the design and analysis of omics studies for the characterization of microbial consortia. The intended audience includes clinical and environmental microbiologists, molecular biologists, infectious disease experts, statisticians, biostatisticians, and public health scientists. This book focuses on the technological underpinnings of metagenomic approaches and their conceptual and practical applications. With the next-generation genomic sequencing revolution increasingly permitting researchers to decipher the coding information of the microbes living with us, we now have a unique capacity to compare multiple sites within individuals and at higher resolution and greater throughput than hitherto possible. The recent articulation of this paradigm points to unique possibilities for investigation of our dynamic relationship with these cellular communities, and excitingly the probing of their therapeutic potential in disease prevention or treatment of the future. - Expertly describes the latest metagenomic methodologies and best-practices, from sample collection to data analysis for taxonomic, whole shotgun metagenomic, and metatranscriptomic studies - Includes clear-headed pointers and quick starts to direct research efforts and increase study efficacy, eschewing ponderous prose - Presented topics include sample collection and preparation, data generation and quality control, third generation sequencing, advances in computational analyses of shotgun metagenomic sequence data, taxonomic profiling of shotgun data, hypothesis testing, and mathematical and computational analysis of longitudinal data and time series. Past-examples and prospects are provided to contextualize the applications.
Ribozymes Provides comprehensive coverage of a core field in the molecular biosciences, bringing together decades of knowledge from the world’s top professionals in the field Timely and unique in its breadth of content, this all-encompassing and authoritative reference on ribozymes documents the great diversity of nucleic acid-based catalysis. It integrates the knowledge gained over the past 35 years in the field and features contributions from virtually every leading expert on the subject. Ribozymes is organized into six major parts. It starts by describing general principles and strategies of nucleic acid catalysis. It then introduces naturally occurring ribozymes and includes the search for new catalytic motifs or novel genomic locations of known motifs. Next, it covers the development and design of engineered ribozymes, before moving on to DNAzymes as a close relative of ribozymes. The next part examines the use of ribozymes for medicinal and environmental diagnostics, as well as for therapeutic tools. It finishes with a look at the tools and methods in ribozyme research, including the techniques and assays for structural and functional characterization of nucleic acid catalysts. The first reference to tie together all aspects of the multi-faceted field of ribozymes Features more than 30 comprehensive chapters in two volumes Covers the chemical principles of RNA catalysis; naturally occurring ribozymes, engineered ribozymes; DNAzymes; ribozymes as tools in diagnostics and therapy, and tools and methods to study ribozymes Includes first-hand accounts of concepts, techniques, and applications by a team of top international experts from leading academic institutions Dedicates half of its content to methods and practical applications, ranging from bioanalytical tools to medical diagnostics to therapeutics Ribozymes is an unmatched resource for all biochemists, biotechnologists, molecular biologists, and bioengineers interested in the topic.
This volume is a timely and comprehensive description of the many facets of DNA and RNA modification-editing processes and to some extent repair mechanisms. Each chapter offers fundamental principles as well as up to date information on recent advances in the field (up to end 2008). They ended by a shortconclusion and future prospect' section and
Ribonucleic acid (RNA) is a macromolecule that plays a central role in cell physiology: RNA molecules act as intermediates between the deoxyribonucleic acid (DNA), where genetic information is stored, and proteins, which perform the necessary functions within the cell. Traditionally, the structural and functional properties of RNA are closely linked to gene expression. However, RNA-based enzymes, called ribozymes, are also involved in catalysis and small RNAs regulate key cellular processes, such as cell growth, division, differentiation, aging and death. RNA is a sensitive macromolecule that can be easily damaged by environmental conditions (ultraviolet radiation, oxidative stress) and biological factors (ribonucleases, ribotoxins, CRISPR-Cas systems). Therefore, cells have developed mechanisms to protect and/or repair RNA molecules. This book presents an overview of the biology of RNA damage, protection and repair in prokaryotes and eukaryotes. Individual chapters cover the expression regulation, enzymology and physiological role of such systems, and link them to important human diseases such as cancer and degenerative diseases.
Nucleases occupy a central position in the biochemistry of DNA transactions and other metabolism of nucleic acids in all organisms. They have also proven useful in modern biological studies crucial for the development of recombinant DNA technology and reverse genetics. Nucleases assist in the identification and characterization of genes responsible for several diseases and their possible alleviation by gene therapy. Molecular Biology of Nucleases introduces the properties and biological roles of nucleases. It is the one comprehensive source for newcomers to the field.
This first of two volumes provides up-to-date, methods-related information on ribonuclease functions, assays, and applications. Chapter topics include the identification of, characterization of, and assays for secreted ribonucleases; viral ribonucleases, artificial and engineered ribonucleases, and ribozymes.The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today--truly an essential publication for researchers in all fields of life sciences.