Download Free Microbial Enhanced Oil Recovery Book in PDF and EPUB Free Download. You can read online Microbial Enhanced Oil Recovery and write the review.

Selection of the optimal recovery method is significantly influenced by economic issues in today's oil and gas markets. Consequently, the development of cost-effective technologies, which bring maximum oil recovery, is the main interest in today's petroleum research communities. Theory and Practice in Microbial Enhanced Oil Recovery provides the fundamentals, latest research and creditable field applications. Microbial Enhanced Oil Recovery (MEOR) is potentially a low-priced and eco-friendly technique in which different microorganisms and their metabolic products are implemented to recover the remaining oil in the reservoir. Despite drastic advantages of MEOR technology, it is still not fully supported in the industry due to lack of knowledge on microbial activities and their complexity of the process. While some selected strategies have demonstrated the feasibility to be used on a mass scale through both lab and field trials, more research remains to implement MEOR into more oil industry practices. This reference delivers comprehensive descriptions on the fundamentals including basic theories on geomicrobiology, experiments and modeling, as well as current tested field applications. Theory and Practice in Microbial Enhanced Oil Recovery gives engineers and researchers the tool needed to stay up to date on this evolving and more sustainable technology. - Covers fundamental screening criteria and theories selective plugging and mobility control mechanisms - Describes the basic effects on environmental parameters and the mechanics of simulation, including microbial growth kinetics - Applies up to date practical applications proven in both the lab and the field
This volume provides a comprehensive review that consolidates all of the pertinent information available. Microbial Enhanced Oil Recovery (MEOR) involves many scientific disciplines, many different approaches, and many different countries. This book supplies the information needed for continued development of MEO methods and points out areas where information is lacking and where more research is needed. This easy-to-use resource focuses on the three types of MEOR processes which can be utilized to recover oil from reservoirs. Successful MEOR involves contributions from petroleum, chemical, genetic, environmental, geotechnical, and bioengineering. Also, geology, chemistry, and microbiology play a major role as well. This critical review book includes a comprehensive reference list and opens the lines of communication among the various fields of study. This work will also encourage the exchange of ideas and interaction necessary for success in this quickly developing technology. Scientists, researchers, and practitioners will find this text to be interesting, informative, and indispensable.consolidatesR
The use of microorganisms and their metabolic products to stimulate oil production is currently receiving renewed interest worldwide. This technique involves the injection of selected microorganisms into the reservoir and the subsequent stimulation and transportation of their in situ growth products, in order that their presence will aid in further reduction of residual oil left in the reservoir after secondary recovery is exhausted. Although unlikely to replace conventional microbial enhanced oil recovery, this unique process seems superior in many respects. Self-duplicating units, namely the bacteria cells, are injected into the reservoir and by their in situ multiplication they magnify beneficial effects.This new approach to enhancement of oil recovery was initiated in 1980 and the first results were published in the proceedings of two international conferences. This book evolved from these conferences, and was designed to encompass all current aspects of microbial enhanced oil recovery: the development of specific cultures, increase of the population for field application, various methods for field applications and the results, and the environmental concerns associated with this newly developed technology. It provides a comprehensive treatise of the subject, and is arranged to show the laboratory development of microbes suited to microbial enhanced oil recovery and the perpetuation of the special cultures in a petroleum reservoir. Thus, this book has specific usefulness in the laboratory, the oilfield and the classroom. Although not written as a text book, it can be used as a reference volume for graduate studies in enhanced oil recovery.
A state-of-the-art presentation of the specific microbes that inhabit oil reservoirs, with an emphasis on the ecological significance of anaerobic microorganisms. Provides fundamental and applied biological approaches, and serves as an invaluable reference source for petroleum engineers, remediation professionals, and field researchers."
This book covers the current states of microbial and related technologies that have been developed for the efficient production of chemicals, fuels and materials by integrating strain and enzyme development, fermentation processes, and downstream processes. The book also covers how microbes and microbial products can be employed to facilitate petroleum recovery. Global consequences of bio-based production of chemicals, fuels and materials are also discussed with insights.
This review of recent developments in our understanding of the role of microbes in sustainable agriculture and biotechnology covers a research area with enormous untapped potential. Chemical fertilizers, pesticides, herbicides and other agricultural inputs derived from fossil fuels have increased agricultural production, yet growing awareness and concern over their adverse effects on soil productivity and environmental quality cannot be ignored. The high cost of these products, the difficulties of meeting demand for them, and their harmful environmental legacy have encouraged scientists to develop alternative strategies to raise productivity, with microbes playing a central role in these efforts. One application is the use of soil microbes as bioinoculants for supplying nutrients and/or stimulating plant growth. Some rhizospheric microbes are known to synthesize plant growth-promoters, siderophores and antibiotics, as well as aiding phosphorous uptake. The last 40 years have seen rapid strides made in our appreciation of the diversity of environmental microbes and their possible benefits to sustainable agriculture and production. The advent of powerful new methodologies in microbial genetics, molecular biology and biotechnology has only quickened the pace of developments. The vital part played by microbes in sustaining our planet’s ecosystems only adds urgency to this enquiry. Culture-dependent microbes already contribute much to human life, yet the latent potential of vast numbers of uncultured—and thus untouched—microbes, is enormous. Culture-independent metagenomic approaches employed in a variety of natural habitats have alerted us to the sheer diversity of these microbes, and resulted in the characterization of novel genes and gene products. Several new antibiotics and biocatalysts have been discovered among environmental genomes and some products have already been commercialized. Meanwhile, dozens of industrial products currently formulated in large quantities from petrochemicals, such as ethanol, butanol, organic acids, and amino acids, are equally obtainable through microbial fermentation. Edited by a trio of recognized authorities on the subject, this survey of a fast-moving field—with so many benefits within reach—will be required reading for all those investigating ways to harness the power of microorganisms in making both agriculture and biotechnology more sustainable.
Biosurfactants for a Sustainable Future Explore the state-of-the-art in biosurfactant technology and its applications in environmental remediation, biomedicine, and biotechnology Biosurfactants for a Sustainable Future explores recent developments in biosurfactants and their use in a variety of cutting-edge applications. The book opens a window on the rapid development of microbiology by explaining how microbes and their products are used in advanced medical technology and in the sustainable remediation of emerging environmental contaminants. The book emphasizes the different techniques that are used for the production of biosurfactants from microorganisms and their characterization. Various aspects of biosurfactants, including structural characteristics, developments, production, bio-economics and their sustainable use in the environment and biomedicine, are addressed, and the book also presents metagenomic strategies to facilitate the discovery of novel biosurfactants producing microorganisms. Readers will benefit from the inclusion of: A thorough introduction to the state-of-the-art in biosurfactant technology, techniques, and applications An exploration of biosurfactant enhanced remediation of sediments contaminated with organics and inorganics A discussion of perspectives for biomedical and biotechnological applications of biosurfactants A review of the antiviral, antimicrobial, and antibiofilm potential of biosurfactants against multi-drug-resistant pathogens. An examination of biosurfactant-inspired control of methicillin-resistant Staphylococcus aureus Perfect for academic researchers and scientists working in the petrochemical industry, pharmaceutical industry, and in the agroindustry, Biosurfactants for a Sustainable Future will also earn a place in the libraries of scientists working in environmental biotechnology, environmental science, and biomedical engineering.
Primer on Enhanced Oil Recovery gives the oil and gas market the introductory information it needs to cover the physical and chemical properties of hydrocarbon reservoir fluids and rock, drilling operations, rock-fluid interactions, recovery methods, and the economy of enhanced oil recovery projects. Beginning with introductory materials on basic physics and oil-rock interaction, the book then progresses into well-known types of EOR, such as gas injection and microbial EOR. Other sections cover hybrid EOR, smart water/low salinity and solar EOR. Worldwide case study examples give engineers the go-to starting point they need to understand the fundamentals of EOR techniques and data.
This book offers practical concepts of EOR processes and summarizes the fundamentals of bioremediation of oil-contaminated sites. The first section presents a simplified description of EOR processes to boost the recovery of oil or to displace and produce the significant amounts of oil left behind in the reservoir during or after the course of any primary and secondary recovery process; it highlights the emerging EOR technological trends and the areas that need research and development; while the second section focuses on the use of biotechnology to remediate the inevitable environmental footprint of crude oil production; such is the case of accidental oil spills in marine, river, and land environments. The readers will gain useful and practical insights in these fields.