Download Free Microbial Endocrinology Interkingdom Signaling In Infectious Disease And Health Book in PDF and EPUB Free Download. You can read online Microbial Endocrinology Interkingdom Signaling In Infectious Disease And Health and write the review.

This new edition highlights the numerous advances made in the field of microbial endocrinology over the last five years. Prominent among these new topics featured is the emergence of the microbiota-gut-brain axis and the role it plays in brain function. Specific focus is given to the role of microbial endocrinology in the evolutionary symbiosis between man and microbe as it relates to both health and disease. With new chapters on the microbiome and its relation to neurochemicals, this new edition brings this important volume up to date.
Microbial endocrinology represents a newly emerging interdisciplinary field that is formed by the intersection of the fields of neurobiology and microbiology. This book will introduce a new perspective to the current understanding not only of the factors that mediate the ability of microbes to cause disease, but also to the mechanisms that maintain normal homeostasis. The discovery that microbes can directly respond to neuroendocrine hormones, as evidenced by increased growth and production of virulence-associated factors, provides for a new framework with which to investigate how microorganisms interface not only with vertebrates, but also with invertebrates and even plants. The reader will learn that the neuroendocrine hormones that one most commonly associates with mammals are actually found throughout the plant, insect and microbial communities to an extent that will undoubtedly surprise many, and most importantly, how interactions between microbes and neuroendocrine hormones can influence the pathophysiology of infectious disease.
Microbial endocrinology represents a newly emerging interdisciplinary field that is formed by the intersection of the fields of neurobiology and microbiology. This book will introduce a new perspective to the current understanding not only of the factors that mediate the ability of microbes to cause disease, but also to the mechanisms that maintain normal homeostasis. The discovery that microbes can directly respond to neuroendocrine hormones, as evidenced by increased growth and production of virulence-associated factors, provides for a new framework with which to investigate how microorganisms interface not only with vertebrates, but also with invertebrates and even plants. The reader will learn that the neuroendocrine hormones that one most commonly associates with mammals are actually found throughout the plant, insect and microbial communities to an extent that will undoubtedly surprise many, and most importantly, how interactions between microbes and neuroendocrine hormones can influence the pathophysiology of infectious disease.
The field of microbial endocrinology is expressly devoted to understanding the mechanisms by which the microbiota (bacteria within the microbiome) interact with the host (“us”). This interaction is a two-way street and the driving force that governs these interactions are the neuroendocrine products of both the host and the microbiota. Chapters include neuroendocrine hormone-induced changes in gene expression and microbial endocrinology and probiotics. This is the first in a series of books dedicated to understanding how bi-directional communication between host and bacteria represents the cutting edge of translational medical research, and hopefully identifies new ways to understand the mechanisms that determine health and disease.​
Ground-breaking overview of an enduring topic Despite the use of antibiotics, bacterial diseases continue to be a critical issue in public health, and bacterial pathogenesis remains a tantalizing problem for research microbiologists. This new edition of Virulence Mechanisms of Bacterial Pathogens broadly covers the knowledge base surrounding this topic and presents recently unraveled bacterial virulence strategies and cutting-edge therapies. A team of editors, led by USDA scientist Indira Kudva, compiled perspectives from experts to explain the wide variety of mechanisms through which bacterial pathogens cause disease: the host interface, host cell enslavement, and bacterial communication, secretion, defenses, and persistence. A collection of reviews on targeted therapies rounds out the seven sections of this unique book. The new edition provides insights into some of the most recent advances in the area of bacterial pathogenesis, including how metabolism shapes the host-pathogen interface interactions across species and genera mechanisms of the secretion systems evasion, survival, and persistence mechanisms new therapies targeting various adaptive and virulence mechanisms of bacterial pathogens Written to promote discussion, extrapolation, exploration, and multidimensional thinking, Virulence Mechanisms of Bacterial Pathogens serves as a textbook for graduate courses on bacterial pathogenesis and a resource for specialists in bacterial pathogenicity, such as molecular biologists, physician scientists, infectious disease clinicians, dental scientists, veterinarians, molecular biologists, industry researchers, and technicians.
Key features: Presents the latest trends and developments of neuromediators in plants Provides in-depth coverage of plants enriched in neurotransmitters (especially serotonin, melatonin, and dopamine) and how they are used in medicine, pharmacy, and food nutrition Discusses the physiological role of the neurotransmitters (biomediators) in non-nervous systems including the analysis of effects on the growth and development and stress defense Covers the occurrence of the substances that act in human and animal nervous system in plants as a phenomenon of the universal irritability feature for biologists Reveals the occurrence and possible physiological functions of biogenic amines in plants, food, and human health New scientific data confirm the origin of neurotransmitters in the ancient ocean, whose inhabitants use the compounds in their relationships. One example is the algae Ulvaria, whose image is represented on the cover. During evolution, plant and microbial cells stored the neurotransmitters that play multifunctional roles today. Researchers have paid special attention to their functions in plants, the oxygen well of our planet. This book provides powerful tools for both analyzing and manipulating organisms, considering the functions of neurotransmitters in plant cells and the practical application of knowledge about acetylcholine, catecholamines, serotonin, melatonin, histamine, gamma-aminobutyric acid and glutamine for ecology, agriculture, medicine and food industries. Neurotransmitters in Plants: Perspectives and Applications presents information on: the location and biosynthesis where neurotransmitters occur the molecular biology of some enzymes participating in the process their role in vivo and in vitro processes their functions in plant environmental adaptation in plants their role in enriching the food and medicinal value of plants.
Microbiome Metabolome Brain Vagus Nerve Circuit in Disease and Recovery focuses on the emerging hypothesis of a dysfunctional microbiome metabolome vagus nerve brain circuit in Alzheimer's disease and associated diseases and medical conditions, including dementia, aging, COVID-19, autoimmune conditions, and inflammatory skin condition rosacea, which may increase the risk of other conditions. This book also discusses the vagus nerve-related conditions, including Arnold's reflex, laryngopharyngeal reflux, duodenogastric reflux, gastroesophageal reflux, and related pulmonary diseases. The subjects covered in the book also address an important question of which one is more important for human health and intellectual abilities: the human genome or the human microbiome? The conceptual model of food and gut microbial tryptamine vagus nerve circuit is also presented in this book. - Addresses the emerging hypothesis of a dysfunctional microbiome vagus nerve brain circuit in Alzheimer's disease and associated diseases and medical conditions - Covers dementia, aging, COVID-19, autoimmune conditions, and inflammatory skin condition rosacea - Presents the conceptual model of food and gut microbial tryptamine vagus nerve circuit - Covers human health and intellectual abilities in the context of both the human genome and the human microbiome
The Gut-Brain Axis: Dietary, Probiotic, and Prebiotic Interventions on the Microbiota examines the potential for microbial manipulation as a therapeutic avenue in central nervous system disorders in which an altered microbiota has been implicated, and explores the mechanisms, sometimes common, by which the microbiota may contribute to such disorders. - Focuses on specific areas in which the microbiota has been implicated in gut-brain communication - Examines common mechanisms and pathways by which the microbiota may influence brain and behavior - Identifies novel therapeutic strategies targeted toward the microbiota in the management of brain activity and behavior
This volume is devoted to the application of microorganisms in medical treatment and health protection. Topics discussed include the role of probiotics in immune modulation, in prevention of influenza, and in atopic dermatitis. Further chapters cover aspects such as the relation of the gut microbiome and stress, the immune system, the regulation of inflammation, the benefits of Bifidobacterium for infants, and bacteriocin in medical applications, as well as the use of in vitro models of the gastrointestinal tract, omics approaches for targeting microbial health potential and the production of hepatitis B vaccines. This volume will be of particular interest to scientists working in the fields of clinical medicine, applied microbiology, pharmacy and public health.
Microbial systems have a strong potential to develop green and sustainable technologies, including sources of renewable energy, alternative fuels, and biosynthetic materials for sustainable applications. Advances in these technologies are evolving to meet growing demand and industries are adapting to green technologies such as solar panels, bioethanol, hydroponics, and more. With the aid of sophisticated technology and integration strategies, these industries are moving toward being more environmentally friendly and sustainable. This book serves as a guide to the newest technologies that will enable the implementation of microbial technologies in fostering an eco-friendly industrial and environmental landscape, which will have widely positive impacts for generations to come. Provides recent insights on diverse technologies involved in green technologies Explains the application of microbes via fungi to remediate pollutants and examines the latest treatment technologies in bioleaching and electronic waste treatment Provides updated information on bioenergy and flexible fungal materials as alternatives to plastics Discusses the application of IOT and communication electronics in the development of green technologies