Download Free Microbes And Enzymes For Water Treatment And Remediation Book in PDF and EPUB Free Download. You can read online Microbes And Enzymes For Water Treatment And Remediation and write the review.

The introduction of emerging contaminants through anthropogenic activities and industrial discharges has raised significant public health concerns worldwide. Various techniques, including bioremediation, have been explored for their effectiveness in removing pollutants from water bodies and effluents. Microorganisms, particularly bacteria and fungi, have emerged as promising candidates for bioremediation due to their abundance, diversity, and ability to thrive under various conditions. Microbes and Enzymes for Water Treatment and Remediation covers a range of topics, from the role of microorganisms and enzymes in efficient pollutant removal to recent advances in microbial immobilization and enzymatic systems for enhanced wastewater treatment. The book provides up-to-date insights into the potential of microbial and enzyme-based processes for wastewater treatment, addressing challenges and limitations while offering alternative methods for effluent treatment and water reclamation. It serves as a valuable resource for understanding the interplay between microbial, biological, and chemical components in the remediation of toxic aqueous pollutants, aiding both researchers and industrialists in advancing environmental stewardship efforts. Offers comprehensive coverage of emerging contaminants and their impact on public health. Provides in-depth exploration of bioremediation techniques utilizing microbial and enzymatic pathways. Addresses the limitations and challenges of the existing microbial and enzyme-based processes for wastewater treatment.
Wastewater Treatment: Cutting-Edge Molecular Tools, Techniques and Applied Aspects reports new findings in existing molecular biology strategies, including their limitations, challenges and potential application to remove environmental pollutants through advancements made in cutting edge tools. In addition, the book introduces new trends and advances in environmental bioremediation with thorough discussions on recent developments in this field. - Describes the application of different omics tools in wastewater treatment plants (WWTPs) - Describes the role of microorganisms in WWTPs - Points out the reuse of treated wastewater through emerging technologies - Includes the recovery of resources from wastewater - Emphasizes the need for the use of cutting-edge molecular tools
Microbial Ecology of Wastewater Treatment Plants presents different methods and techniques used in microbial ecology to study the interactions and evolution of microbial populations in WWTPs, particularly the new molecular tools developed in the last decades. These molecular biology-based methods (e.g. studies of DNA, RNA and proteins) provide a high resolution of information compared to traditional ways of studying microbial wastewater populations, such as microscopic examination and culture-based methods. In addition, this book addresses the ability of microorganisms to degrade environmental pollutants. - Describes application of different Omics tools in Wastewater treatment plants (WWTPs) - Demonstrates the role of microorganisms in WWTPs - Includes discussions on the microbial ecology of WWTPs - Covers the microbial diversity of activated sludge - Emphasizes cutting-edge molecular tools
Removal of Toxic Pollutants through Microbiological and Tertiary Treatment: New Perspectives offers a current account of existing advanced oxidation strategies - including their limitations, challenges, and potential applications - in removing environmental pollutants through microbiological and tertiary treatment methods. The book introduces new trends and advances in environmental bioremediation technology, with thorough discussion of recent developments in the field. Updated information as well as future research directions in the field of bioremediation of industrial wastes is included. This book is an indispensable guide to students, researchers, scientists, and professionals working in fields such as microbiology, biotechnology, environmental sciences, eco-toxicology, and environmental remediation. The book also serves as a helpful guide for waste management professionals and those working on the biodegradation and bioremediation of industrial wastes and environmental pollutants for environmental sustainability. - Introduces various treatment schemes, including microbiological and tertiary technologies for bioremediation of environmental pollutants and industrial wastes - Includes pharmaceutical wastewater, oil refinery wastewater, distillery wastewater, tannery wastewater, textile wastewater, mine tailing wastes, plastic wastes, and more - Describes the role of relatively new treatment technologies and their approaches in bioremediation, including molecular and protein engineering technologies, microbial enzymes, bio surfactants, plant-microbe interactions, and genetically engineered organisms - Provides many advanced technologies in the field of bioremediation and phytoremediation, including electro-bioremediation technology, microbial fuel cell technology, nano-bioremediation technology, and phytotechnologies
Microbial Wastewater Treatment focuses on the exploitation of microorganisms as decontaminating tools to treat polluted wastewater, a worldwide concern. Microorganism-based processes are seen as promising technologies to treat the ever-increasing problem of polluted wastewater. The book covers recently developed process technologies to solve five major trends in the field of wastewater treatment, including nutrient removal and recovery, trace organic compounds, energy saving and production, sustainability and community involvement. - Illustrates the importance of microorganisms in wastewater treatment - Points out the reuse of the treated wastewater - Highlights the recovery of resources from wastewater - Pays attention to the occurrence of novel micro-pollutants - Introduces new trends in wastewater technology
Rapid industrialization is a serious concern in the context of a healthy environment. With the growth in the number of industries, the waste generated is also growing exponentially. The various chemical processes operating in the manufacturing industry generate a large number of by-products, which are largely harmful and toxic pollutants and are generally discharged into the natural water bodies. Once the pollutants enter the environment, they are taken up by different life forms, and because of bio-magnification, they affect the entire food chain and have severe adverse effects on all life forms, including on human health. Although, various physico-chemical and biological approaches are available for the removal of toxic pollutants, unfortunately these are often ineffective and traditional clean up practices are inefficient. Biological approaches utilizing microorganisms (bacterial/fungi/algae), green plants or their enzymes to degrade or detoxify environmental pollutants such as endocrine disruptors, toxic metals, pesticides, dyes, petroleum hydrocarbons and phenolic compounds, offer eco- friendly approaches. Such eco-friendly approaches are often more effective than traditional practices, and are safe for both industry workers as well as environment. This book provides a comprehensive overview of various toxic environmental pollutants from a variety natural and anthropogenic sources, their toxicological effects on the environment, humans, animals and plants as well as their biodegradation and bioremediation using emerging and eco-friendly approaches (e.g. Anammox technology, advanced oxidation processes, membrane bioreactors, membrane processes, GMOs), microbial degradation (e.g. bacteria, fungi, algae), phytoremediation, biotechnology and nanobiotechnology. Offering fundamental and advanced information on environmental problems, challenges and bioremediation approaches used for the remediation of contaminated sites, it is a valuable resource for students, scientists and researchers engaged in microbiology, biotechnology and environmental sciences.
Bioprospecting of Microbial Diversity: Challenges and Applications in Biochemical Industry, Agriculture and Environment Protection gives a detailed insight into the utilization of microorganisms or microorganism-based bioactive compounds for the development of sustainable approaches, covering recent advances and challenges in the production and recovery of bioactive compounds such as enzymes, biopesticides, biofertilizers, biosensors, therapeutics, nutraceutical and pharmaceutical products. The challenges associated with the different approaches of microbial bioprospecting along with possible solutions to overcome these limitations are addressed. Further, the application of microbe-based products in the area of environmental pollution control and developing greener technologies are discussed. Providing valuable insight into the basics of microbial prospecting, the book covers established knowledge as well as genomic-based technological advancements to offer a better understanding of its application to various industries, promoting the commercialization of microbial-derived bioactive compounds and their application in biochemical industries, agriculture, and environmental protection studies. - Describes the advanced techniques available for microbial bioprospecting for large-scale industrial production of bioactive compounds - Presents recent advances and challenges for the application of microbe-based products in agriculture and environment pollution control - Provides knowledge of microbial production of bioenergy and high-value compounds such as nutraceuticals and pharmaceuticals
This book adopts a "show and tell" approach to guiding readers in the area of industrial wastewater treatment and the facilities associated with such treatment. It assumes the reader is familiar with wastewater treatment theory but may be unfamiliar with the reasons why certain unit processes or equipment are included in practice, how these work, and why they fail therein. Industrial wastewaters are extremely varied and this complicates their treatment and discussion. Numerous tables showing industrial wastewater characteristics and photographs of facilities are provided so that the reader can better appreciate industrial wastewater treatment and its "culture" in Asia, and gain a degree of familiarity with the subject unachievable if only text descriptions were used. The book aims to provide a link between theory and practice. It does not only cover typical textbook material but also includes much information that would usually be accessible only to persons who have handled wastewaters and treatment facilities personally. The numerous examples provided have been drawn from the author's own field experience over two decades in Asia.
Wastewater Treatment Reactors: Microbial Community Structure analyzes microbial community structure in relation to changes in physico-chemical parameters, the gene content (metagenome) or gene expression (metatranscriptome) of microbial communities in relation to changes in physico-chemical parameters, physiological aspects of microbial communities, enrichment cultures or pure cultures of key species in relation to changes in physico-chemical parameters, and modeling of potential consequences of changes in microbial community structure or function for higher trophic levels in a given habitat. As several studies have been carried out to understand bulking phenomena and the importance of environmental factors on sludge settling characteristics, which are thought to be strongly influenced by flocculation, sludge bulking, foaming and rising, this book is an ideal resource on the topics covered. Presents the state-of-the-art techniques and applications of omics tools in wastewater treatment reactors (WWTRs) Describes both theoretical and practical knowledge surrounding the fundamental roles of microorganisms in WWTRs Points out the reuse of treated wastewater through emerging technologies Covers the economics of wastewater treatment and the development of suitable alternatives in terms of performance and cost effectiveness Discusses cutting-edge molecular biological tools Gives in-depth knowledge to study microbial community structure and function in wastewater treatment reactors
This book discusses new and innovative trends and techniques in the removal of toxic and or refractory pollutants through various environmental biotechnological processes from wastewater, both at the laboratory and industrial scale. It focuses primarily on environmentally-friendly technologies which respect the principles of sustainable development, including the advanced trends in remediation through an approach of environmental biotechnological processes from either industrial or sewage wastewater. Features: Examines the fate and occurrence of refractory pollutants in wastewater treatment plants (WWTPs) and the potential approaches for their removal. Highlights advanced remediation procedures involving various microbiological and biochemical processes. Assesses and compares the potential application of numerous existing treatment techniques and introduces new, emerging technologies. Removal of Refractory Pollutants from Wastewater Treatment Plants is suitable for practicing engineers, researchers, water utility managers, and students who seek an excellent introduction and basic knowledge in the principles of environmental bioremediation technologies.