Download Free Micro Nano Chip Electrokinetics Book in PDF and EPUB Free Download. You can read online Micro Nano Chip Electrokinetics and write the review.

Micro/nanofluidics-based lab-on-a-chip devices have found extensive applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics is the method of choice in these micro/nano-chips for transporting, manipulating, and sensing various analyte species (e.g., ions, molecules, fluids, and particles). This book aims to highlight the recent developments in the field of micro/nano-chip electrokinetics, ranging from the fundamentals of electrokinetics to the applications of electrokinetics to both chemo- and bio-sample handling.
This book is a printed edition of the Special Issue "Micro/Nano-Chip Electrokinetics" that was published in Micromachines
Micro/nanofluidics-based lab-on-a-chip devices have found extensive applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics is the method of choice in these micro/nano-chips for transporting, manipulating, and sensing various analyte species (e.g., ions, molecules, fluids, and particles). This book aims to highlight the recent developments in the field of micro/nano-chip electrokinetics, ranging from the fundamentals of electrokinetics to the applications of electrokinetics to both chemo- and bio-sample handling.
A collection of chapters, authored by leading experts in the field, on the use of micro and nano technologies for biomedical applications.
Nanoparticles are revolutionizing and helping to improve every sector including engineering, medicine, food safety, transportation, energy, and environmental science. To ensure industries take full advantage of the opportunities nanoparticles provide, further study on the advancements and challenges within the field is required. Diversity and Applications of New Age Nanoparticles considers new developments and applications of nanoparticles and addresses the development of new materials, synthesis routes, and emerging research in this field. Covering key topics such as antibiotics, thin films, battery technologies, and composites, this premier reference source is ideal for industry professionals, computer scientists, policymakers, engineers, pharmacists, medical professionals, researchers, scholars, practitioners, instructors, and students.
Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro-/nanofluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving electrophoresis, dielectrophoresis, electroosmosis, and induced-charge electroosmosis. The book emphasizes the direct numerical simulation of electrokinetic particle transport phenomena, plus several supportive experimental studies. Using the commercial finite element package COMSOL Multiphysics®, it guides researchers on how to predict the particle transport subjected to electric fields in micro-/nanoscale channels. Researchers in the micro-/nanofluidics community, who may have limited experience in writing their own codes for numerical simulations, can extend the numerical models and codes presented in this book to their own research and guide the development of real micro-/nanofluidics devices. Corresponding COMSOL® script files are provided with the book and can be downloaded from the author’s website.
This book is a printed edition of the Special Issue "Micro/Nano Manufacturing" that was published in Micromachines
Das erste Handbuch, das Robotertechnik und Nanotechnologie verbindet, als Nachschlagewerk die Grundlagen zusammenfasst und neue Anwendungen in den Bereichen Halbleiter-Packaging, klinische Diagnose und Chirurgie vorstellt. Durchgängig mit aufregenden Aufnahmen auf Nanoebene.
Optofluidic devices are of high scientific and industrial interest in chemistry, biology, material science, pharmacy, and medicine. In recent years, they have experienced strong development because of impressive achievements in the synergistic combination of photonics and micro/nanofluidics. Sensing and/or lasing platforms showing unprecedented sensitivities in extremely small analyte volumes, and allowing real-time analysis within a lab-on-a-chip approach, have been developed. They are based on the interaction of fluids with evanescent waves induced at the surface of metallic or photonic structures, on the implementation of microcavities to induce optical resonances in the fluid medium, or on other interactions of the microfluidic systems with light. In this context, a large variety of optofluidic devices has emerged, covering topics such as cell manipulation, microfabrication, water purification, energy production, catalytic reactions, microparticle sorting, micro-imaging, or bio-sensing. Moreover, the integration of these optofluidic devices in larger electro-optic platforms represents a highly valuable improvement towards advanced applications, such as those based on surface plasmon resonances that are already on the market. In this Special Issue, we invited the scientific community working in this rapidly evolving field to publish recent research and/or review papers on these optofluidic devices and their applications.