Download Free Micro And Nanotechnologies For Biotechnology Book in PDF and EPUB Free Download. You can read online Micro And Nanotechnologies For Biotechnology and write the review.

A cutting-edge look at the application of micro and nanotechnologies in regenerative medicine The area at the interface of micro/nanotechnology and stem cells/tissue engineering has seen an explosion of activity in recent years. This book provides a much-needed overview of these exciting developments, covering all aspects of micro and nanotechnologies, from the fundamental principles to the latest research to applications in regenerative medicine. Written and edited by the top researchers in the field, Micro and Nanotechnologies in Engineering Stem Cells and Tissues describes advances in material systems along with current techniques available for cell, tissue, and organ studies. Readers will gain tremendous insight into the state of the art of stem cells and tissue engineering, and learn how to use the technology in their own research or clinical trials. Coverage includes: Technologies for controlling or regulating stem cell and tissue growth Various engineering approaches for stem cell, vascular tissue, and bone regeneration The design and processing of biocompatible polymers and other biomaterials Characterization of the interactions between cells and biomaterials Unrivaled among books of this kind, Micro and Nanotechnologies in Engineering Stem Cells and Tissues is the ultimate forward-looking reference for researchers in numerous disciplines, from engineering and materials science to biomedicine, and for anyone wishing to understand the trends in this transformative field.
Learning Bio-Micro-Nanotechnology is a primer on micro/nanotechnology that teaches the vocabulary, fundamental concepts, and applications of micro/nanotechnology in biology, chemistry, physics, engineering, electronics, computers, biomedicine, microscopy, ethics, and risks to humankind. It provides an introduction into the small world with a low fo
In recent years, large-scale advances in technology have led to greater understanding of the world on a much tinier scale: the biomolecular level. In Micro and Nano Technologies in Bioanalysis: Methods and Protocols, expert researchers from across the globe explore the technology which makes this analysis possible, investigating the worlds of microfluidics and nanotechnologies, and examining physical science techniques for the separation, detection, manipulation, and analysis of biomolecules. This volume contains innovative protocols on the application of microfluidics and the utilization of physical science-related technologies that will prove to be invaluable in the field of molecular biology. Chapters contain cutting edge applications of emerging nanotechnologies, including quantum dots and molecular fluorescence for the imaging and tracking of biomolecules. Composed in the highly successful Methods in Molecular BiologyTM series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary materials, and a Notes section which shares tips on troubleshooting and avoiding known pitfalls. Comprehensive and groundbreaking, Micro and Nano Technologies in Bioanalysis: Methods and Protocols is a necessary tool for cellular biologists, biochemists, microbiologists, geneticists and medical researchers alike.
This book provides comprehensive information of the nanotechnology-based pharmaceutical product development including a diverse range of arenas such as liposomes, nanoparticles, fullerenes, hydrogels, thermally responsive externally activated theranostics (TREAT), hydrogels, microspheres, micro- and nanoemulsions and carbon nanomaterials. It covers the micro- and nanotechnological aspects for pharmaceutical product development with the product development point of view and also covers the industrial aspects, novel technologies, stability studies, validation, safety and toxicity profiles, regulatory perspectives, scale-up technologies and fundamental concept in the development of products. Salient Features: Covers micro- and nanotechnology approaches with current trends with safety and efficacy in product development. Presents an overview of the recent progress of stability testing, reverse engineering, validation and regulatory perspectives as per regulatory requirements. Provides a comprehensive overview of the latest research related to micro- and nanotechnologies including designing, optimisation, validation and scale-up of micro- and nanotechnologies. Is edited by two well-known researchers by contribution of vivid chapters from renowned scientists across the globe in the field of pharmaceutical sciences. Dr. Neelesh Kumar Mehra is working as an Assistant Professor of Pharmaceutics & Biopharmaceutics at the Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, India. He received ‘TEAM AWARD’ for successful commercialisation of an ophthalmic suspension product. He has authored more than 60 peer-reviewed publications in highly reputed international journals and more than 10 book chapter contributions. He has filed patents on manufacturing process and composition to improved therapeutic efficacy for topical delivery. He guided PhD and MS students for their dissertations/research projects. He has received numerous outstanding awards including Young Scientist Award and Team Award for his research output. He recently published one edited book, ‘Dendrimers in Nanomedicine: Concept, Theory and Regulatory Perspectives’, in CRC Press. Currently, he is editing books on nano drug delivery-based products with Elsevier Pvt Ltd. He has rich research and teaching experience in the formulation and development of complex, innovative ophthalmic and injectable biopharmaceutical products including micro- and nanotechnologies for regulated market. Dr. Arvind Gulbake is working as an Assistant Professor at the Faculty of Pharmacy, School of Pharmaceutical & Population Health Informatics, at DIT University, Dehradun, India. He has authored more than 40 peer-reviewed publications in highly reputed international journals, four book chapters and a patent contribution. He has received outstanding awards including Young Scientist Award and BRG Travel Award for his research. He is an assistant editor for IJAP. He guided PhD and MS students for their dissertations/research projects. He has successfully completed extramural project funded by SERB, New Delhi, Government of India. He has more than 12 years of research and teaching experience in the formulation and development of nanopharmaceuticals.
Offers a review of key aspects of BioMEMS sensors, including BioMEMS sensors and materials, means of manipulating biological entities at the microscale, and micro-fluidics and characterization.
Part I The Nano-Scale Biological Systems in Nature; Molecular bio-motors in living cells – by T. Nishizaka; The form designed by viral genome – by K. Onodera; Part II Detection and Characterization Technology; Atomic force microscopy applied to nano-mechanics of the cell – by A. Ikai; Design, synthesis and biological application of fluorescent sensor molecules for cellular imaging – by K. Kikuchi; Dynamic visualization of cellular signaling – by Q. Ni and J. Zhang; Part III Fabrication Technology; Surface acoustic wave atomizer and electrostatic deposition – by Y. Yamagata; Electrospray deposition of biomolecules by V.N. Morozov; Part IV Processing Technology; Droplet handling – by T.Torii; Integrated microfluidic systems – by S. Kaneda and T. Fujii; Part V Applications; A novel non-viral gene delivery system: Multifunctional envelope-type nano device - by H. Hatakeyama, H. Akita, K. Kogure, and H. Harashima; Biosensors - by M. Saito, H.M. Hiep, N. Nagatani, and E.Tamiya; Micro bioreactors – by Sato and T. Kitamori
This tutorial book offers an in-depth overview of the fundamental principles of micro/nano technologies and devices related to sensing, actuation and diagnosis in fluidics and biosystems. Research in the MEMS/NEMS and lab-on-chip fields has seen rapid growth in both academic and industrial domains, as these biodevices and systems are increasingly replacing traditional large size diagnostic tools. This book is unique in describing not only the devices and technologies but also the basic principles of their operation. The comprehensive description of the fabrication, packaging and principles of micro/nano biosystems presented in this book offers guidance for researchers designing and implementing these biosystems across diverse fields including medical, pharmaceutical and biological sciences. The book provides a detailed overview of the fundamental mechanical, optical, electrical and magnetic principles involved, together with the technologies required for the design, fabrication and characterization of micro/nano fluidic systems and bio-devices. Written by a collaborative team from France and Korea, the book is suitable for academics, researchers, advanced level students and industrial manufacturers.
Several micro- and nanomanipulation techniques have emerged in recent decades thanks to advances in micro- and nanofabrication. For instance, the atomic force microscope (AFM) uses a nano-sized tip to image, push, pull, cut, and indent biological material in air, liquid, or vacuum. Using micro- and nanofabrication techniques, scientists can make ma
Supported with 140 illustrations, the volume exhaustively covers the micro- and nano-system technologies involved in developing cell-based bioengineering applications. You get full details on efforts to engineer the soluble and insoluble cell microenvironments, including the latest advances in microfluidic devices, surface patterning, 3D scaffolds, and techniques for engineering cellular mechanical properties and topography.