Download Free Metric Rigidity Theorems On Hermitian Locally Symmetric Manifolds Book in PDF and EPUB Free Download. You can read online Metric Rigidity Theorems On Hermitian Locally Symmetric Manifolds and write the review.

This monograph studies the problem of characterizing canonical metrics on Hermitian locally symmetric manifolds X of non-compact/compact types in terms of curvature conditions. The proofs of these metric rigidity theorems are applied to the study of holomorphic mappings between manifolds X of the same type. Moreover, a dual version of the generalized Frankel Conjecture on characterizing compact K„hler manifolds are also formulated.
This monograph studies the problem of characterizing canonical metrics on Hermitian locally symmetric manifolds X of non-compact/compact types in terms of curvature conditions. The proofs of these metric rigidity theorems are applied to the study of holomorphic mappings between manifolds X of the same type. Moreover, a dual version of the generalized Frankel Conjecture on characterizing compact K„hler manifolds are also formulated.
This volume contains the proceedings of the conference Local and Global Methods in Algebraic Geometry, held from May 12–15, 2016, at the University of Illinois at Chicago, in honor of Lawrence Ein's 60th birthday. The articles cover a broad range of topics in algebraic geometry and related fields, including birational geometry and moduli theory, analytic and positive characteristic methods, geometry of surfaces, singularity theory, hyper-Kähler geometry, rational points, and rational curves.
Introduces uniform constructions of most of the known compactifications of symmetric and locally symmetric spaces, with emphasis on their geometric and topological structures Relatively self-contained reference aimed at graduate students and research mathematicians interested in the applications of Lie theory and representation theory to analysis, number theory, algebraic geometry and algebraic topology
The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.
The papers contained in this book address problems in one and several complex variables. The main theme is the extension of geometric function theory methods and theorems to several complex variables. The papers present various results on the growth of mappings in various classes as well as observations about the boundary behavior of mappings, via developing and using some semi group methods.
This volume comprises the proceedings of a conference on the geometric analysis of several complex variables held at POSTECH in June 1997. The conference was attended by scienctists and students from around the globe. Each of the five plenary speakers at the conference gave a short course on a topic of current interest in the field. The lecture write-ups contain cogent and accessible information intended for a broad audience. The volume also includes a tutorial in several complex variables given by Kim and Krantz at the conference. This tutorial is geared toward helping the novice to understand the rest of the material in the book. The bibliographies of the papers give students and young mathematicians a valuable resource for future learning on the topic. This book provides a substantial overview on areas of current activity. Required background for understanding the text is a solid undergraduate education in mathematics and familiarity with first year graduate studies in real and complex analysis. Some exposure to geometry would be helpful. The book is also suitable for use as a supplemental course text.
The KSCV Symposium, the Korean Conference on Several Complex Variables, started in 1997 in an effort to promote the study of complex analysis and geometry. Since then, the conference met semi-regularly for about 10 years and then settled on being held biannually. The sixth and tenth conferences were held in 2002 and 2014 as satellite conferences to the Beijing International Congress of Mathematicians (ICM) and the Seoul ICM, respectively. The purpose of the KSCV Symposium is to organize the research talks of many leading scholars in the world, to provide an opportunity for communication, and to promote new researchers in this field.
In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n, \mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA.Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come.(AMSIP/43.
Since the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many important and challenging unsolved problems including, among others, the Strominger–Yau–Zaslow conjecture on mirror symmetry, the relative Yau–Tian–Donaldson conjecture in Kähler geometry, the Hopf conjecture, and the Yau conjecture on the first eigenvalue of an embedded minimal hypersurface of the sphere. For the younger generation to approach such problems and obtain the required techniques, it is of the utmost importance to provide them with up-to-date information from leading specialists.The geometry conference for the friendship of China and Japan has achieved this purpose during the past 10 years. Their talks deal with problems at the highest level, often accompanied with solutions and ideas, which extend across various fields in Riemannian geometry, symplectic and contact geometry, and complex geometry.