Download Free Methylotrophs Microbiology Biochemistry And Genetics Book in PDF and EPUB Free Download. You can read online Methylotrophs Microbiology Biochemistry And Genetics and write the review.

This book offers a comprehensive examination of the microbiology, biochemistry, genetics, and applied aspects of methylotrophsThis book is intended for reference purposes at the professional level and for students at the graduate level. It is hoped that it will provide researchers with not only basic science, but also applied aspects of methylotrophs.
This book offers a comprehensive examination of the microbiology, biochemistry, genetics, and applied aspects of methylotrophsThis book is intended for reference purposes at the professional level and for students at the graduate level. It is hoped that it will provide researchers with not only basic science, but also applied aspects of methylotrophs.
I belie ve that the book would provide an overview of the recent developments in the domain of yeast research with some new ideas, which could serve as an inspiration and challenge for researchers in this field. Ne w Delhi Prof. Asis Datta Dec. 24, 2007 F ormer Vice-chancellor, JNU Director, NCPGR (New Delhi) Pr eface Yeasts are eukaryotic unicellular microfungi that are widely distributed in the natural environments. Although yeasts are not as ubiquitous as bacteria in the na- ral environments, they have been isolated from terrestrial, aquatic and atmospheric environments. Yeast communities have been found in association with plants, a- mals and insects. Several species of yeasts have also been isolated from specialized or extreme environments like those with low water potential (e. g. high sugar/salt concentrations), low temperature (e. g. yeasts isolated from Antarctica), and low oxygen availability (e. g. intestinal tracts of animals). Around 1500 species of yeasts belonging to over 100 genera have been described so far. It is estimated that only 1% of the extant yeasts on earth have been described till date. Therefore, global efforts are underway to recover new yeast species from a variety of normal and extreme environments. Yeasts play an important role in food chains, and carbon, nitrogen and sulphur cycles. Yeasts can be genetically manipulated by hybridization, mutation, rare m- ing, cytoduction, spheroplast fusion, single chromosomal transfer and transfor- tion using recombinant technology. Yeasts (e. g.
Biology of Methylotrophs introduces the reader to the study of methylotrophs - microorganisms that use reduced one-carbon compounds for growth. The book is divided into five parts. Part I covers the taxonomy, morphology, and ultrastructure of methylotrophic bacteria. Part II discusses the processes involved in their growth and metabolism. Part III talks about the possible applications of methylotrophs and their enzymes in industrial fields as well as chemistry. Part IV deals with the molecular genetics and the gene expression of methylotrophs, and Part V deals with their habitat and role in the environment. The text is recommended for microbiologists who would like to be acquainted with the subject or make further studies about methylotrophs.
Describing the scientific and commercial applications of microbial recombinant DNA technology, this outstanding, single-source reference offers state-of-the-art reviews of gene expression in the most important classes of recombinant microorganisms-providing numerous examples of the expression of homologous genes or heterologous gene products. Presents a unique collection of safety and regulatory considerations from around the world and addresses specific measures to be taken for large-scale industrial operations!
This comprehensive volume is a compilation of articles, some written by established scientists, others by young and upcoming methylotrophy researchers.
The 5th International Symposium on Microbial Growth on C Compounds was held at the Biological 1 Center of the University of Groningen, Haren, The Netherlands, 11-16 August 1986. The meeting attracted well over 200 participants from 15 countries. This volume contains the formal presentations made at that time, which, because of the breadth of topics covered, were divided into seven sections of related papers. This meeting, under the chairmanship of Wim Harder, was both scientifically and socially very successful. This success cannot only be credited to the main presentations, but also to the well cared for 121 poster presentations, whereof the abstracts have been published separately. The series of Symposia will be continued in 1989, in the Federal Republic of Germany. We wish to acknowledge the invaluable help of Joke Daniels, Roberta Stroer-Schneider, Karin Uyldert, Hansje Bartelson and Josine van Verseveld-Stroer, who retyped the manuscripts resulting in a uniform presentation of these proceedings.
While the choices of microbial and eukaryotic expression systems for production of recombinant proteins are many, most researchers in academic and industrial settings do not have ready access to pertinent biological and technical information since it is normally scattered throughout the scientific literature. This book closes the gap by providing information on the general biology of the host organism, a description of the expression platform, a methodological section -- with strains, genetic elements, vectors and special methods, where applicable -- as well as examples of proteins produced with the respective platform. The systems thus described are well balanced by the inclusion of three prokaryotes (two Gram-negatives and one Gram-positive), four yeasts, two filamentous fungi and two higher eukaryotic cell systems -- mammalian and plant cells. Throughout, the book provides valuable practical and theoretical information on the criteria and schemes for selecting the appropriate expression platform, the possibility and practicality of a universal expression vector, and on comparative industrial-scale fermentation, with the production of a recombinant Hepatitis B vaccine chosen as an industrial example. With a foreword by Herbert P. Schweizer, Colorado State University, USA: "As a whole, this book is a valuable and overdue resource for a varied audience. It is a practical guide for academic and industrial researchers who are confronted with the design of the most suitable expression platform for their favorite protein for technical or pharmaceutical purposes. In addition, the book is also a valuable study resource for professors and students in the fields of applied biology and biotechnology."
Methane and its oxidation product, methanol, have occupied an important position in the chemical industry for many years: the former as a feedstock, the latter as a primary chemical from which many products are produced. More recently, the role played by methane as a potent "greenhouse" gas has aroused considerable attention from environmentalists and clima tologists alike. This role for C compounds has, of course, been quite 1 incidental to the myriad of microorganisms on this planet that have adapted their life-styles to take advantage of these readily available am bient sources. Methane, a renewable energy source that will always be with us, is actually a difficult molecule to activate; so any microorganism that can effect this may point the way to catalytic chemists looking for con trollable methane oxidation. Methanol, formed as a breakdown product of plant material, is also ubiquitous and has also encouraged the growth of prokaryotes and eukaryotes alike. In an attempt to give a balanced view of how microorganisms have been able to exploit these simple carbon sources, we have asked a number ofleading scientists (modesty forbids our own inclusion here) to contribute chapters on their specialist areas of the subject.