Download Free Methods Of Dynamic And Nonsmooth Optimization Book in PDF and EPUB Free Download. You can read online Methods Of Dynamic And Nonsmooth Optimization and write the review.

Presents the elements of a unified approach to optimization based on "nonsmooth analysis," a term introduced in the 1970's by the author, who is a pioneer in the field. Based on a series of lectures given at a conference at Emory University in 1986, this volume presents its subjects in a self-contained and accessible manner. The topics treated here have been in an active state of development, and this work therefore incorporates more recent results than those presented in 1986. Focuses mainly on deterministic optimal control, the calculus of variations, and mathematical programming. In addition, it features a tutorial in nonsmooth analysis and geometry and demonstrates that the method of value function analysis via proximal normals is a powerful tool in the study of necessary conditions, sufficient conditions, controllability, and sensitivity analysis. The distinction between inductive and deductive methods, the use of Hamiltonians, the verification technique, and penalization are also emphasized.
Presents the elements of a unified approach to optimization based on 'nonsmooth analysis', a term introduced in the 1970's by the author, who is a pioneer in the field. Based on a series of lectures given at a conference at Emory University in 1986, this volume presents its subjects in a self-contained and accessible manner. The topics treated here have been in an active state of development. Focuses mainly on deterministic optimal control, the calculus of variations, and mathematical programming. In addition, it features a tutorial in nonsmooth analysis and geometry and demonstrates that the method of value function analysis via proximal normals is a powerful tool in the study of necessary conditions, sufficient conditions, controllability, and sensitivity analysis. The distinction between inductive and deductive methods, the use of Hamiltonians, the verification technique, and penalization are also emphasized.
Nonsmooth Optimization contains the proceedings of a workshop on non-smooth optimization (NSO) held from March 28 to April 8,1977 in Austria under the auspices of the International Institute for Applied Systems Analysis. The papers explore the techniques and theory of NSO and cover topics ranging from systems of inequalities to smooth approximation of non-smooth functions, as well as quadratic programming and line searches. Comprised of nine chapters, this volume begins with a survey of Soviet research on subgradient optimization carried out since 1962, followed by a discussion on rates of convergence in subgradient optimization. The reader is then introduced to the method of subgradient optimization in an abstract setting and the minimal hypotheses required to ensure convergence; NSO and nonlinear programming; and bundle methods in NSO. A feasible descent algorithm for linearly constrained least squares problems is described. The book also considers sufficient minimization of piecewise-linear univariate functions before concluding with a description of the method of parametric decomposition in mathematical programming. This monograph will be of interest to mathematicians and mathematics students.
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
This book addresses modern nonlinear programming (NLP) concepts and algorithms, especially as they apply to challenging applications in chemical process engineering. The author provides a firm grounding in fundamental NLP properties and algorithms, and relates them to real-world problem classes in process optimization, thus making the material understandable and useful to chemical engineers and experts in mathematical optimization.
"This monograph serves present and future needs where nonconvexity and nondifferentiability are inevitably present in the faithful modeling of real-world applications of optimization"--
We describe in this book recent advances in fuzzy sets theory, fractional calculus, dynamic systems, and optimization. The book provides a setting for the discussion of recent developments in a wide variety of topics including partial differential equations, dynamic systems, optimization, numerical analysis, fuzzy sets theory, fractional calculus, and its applications. The book is aimed at bringing together contributions from leading academic scientists, researchers, and research scholars to exchange and share their experiences and research results on all aspects of applied mathematics, modeling, algebra, economics, finance, and applications. It also provides an interdisciplinary platform for researchers, practitioners, and educators to present the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of applied mathematics. The published chapters address various aspects of academic scientists, researchers, and research scholars in many variety mathematical topics.
Dynamic Treatment Regimes: Statistical Methods for Precision Medicine provides a comprehensive introduction to statistical methodology for the evaluation and discovery of dynamic treatment regimes from data. Researchers and graduate students in statistics, data science, and related quantitative disciplines with a background in probability and statistical inference and popular statistical modeling techniques will be prepared for further study of this rapidly evolving field. A dynamic treatment regime is a set of sequential decision rules, each corresponding to a key decision point in a disease or disorder process, where each rule takes as input patient information and returns the treatment option he or she should receive. Thus, a treatment regime formalizes how a clinician synthesizes patient information and selects treatments in practice. Treatment regimes are of obvious relevance to precision medicine, which involves tailoring treatment selection to patient characteristics in an evidence-based way. Of critical importance to precision medicine is estimation of an optimal treatment regime, one that, if used to select treatments for the patient population, would lead to the most beneficial outcome on average. Key methods for estimation of an optimal treatment regime from data are motivated and described in detail. A dedicated companion website presents full accounts of application of the methods using a comprehensive R package developed by the authors. The authors’ website www.dtr-book.com includes updates, corrections, new papers, and links to useful websites.