Download Free Methods In Molecular Biology Transcription Factor Protocols Book in PDF and EPUB Free Download. You can read online Methods In Molecular Biology Transcription Factor Protocols and write the review.

Recent years have seen significant advancements in the development of enabling technologies that facilitate the study of Transcription Factors (TFs). TFs are pivotal in the regulation of plant development, reproduction, intercellular signaling, response to environment, cell cycle, and metabolism. Plant Transcription Factors: Methods and Protocols offers a comprehensive approach by covering the basic concepts as well as the detailed protocols of a series of commonly used tools for investigating plant TFs. From discussing select TF families in plants to presenting approaches for identifying them, methods are covered to verify the function, to identify protein interactions in which TFs are involved, and how the interactions are mediated. Increasing examples of TFs that function non-cell-autonomously are being discovered and methods to assess intercellular trafficking are also addressed. A section is devoted to examining interaction with DNA, and the volume concludes with a discussion of directed evolution to generate transcription factors that can more efficiently control desired processes. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Plant Transcription Factors: Methods and Protocols serves as an ideal guide to seasoned plant molecular biologists as well as scientists new to the field of TFs and provides many necessary methods to all scientists who are interested in exploring the functions of transcription factors.
Recent insight into the transcripts generated from the mammalian genome (i.e. the transcriptome) has revealed that transcription is a far more complex phenomenon than previously thought. In RNA: Methods and Protocols, expert researchers provide the procedures and methods used to describe the structure of messenger RNAs and non-coding RNAs that are transcribed by RNA polymerase II as the immediate gene products in mammalian cells. Focused on the structure of the RNA products of “gene X” and the mapping of proteins associated with these RNAs, the volume presents appropriate information for non-specialists in RNA biology. Written in the highly successful Methods in Molecular BiologyTM series format, many chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Comprehensive and practical, RNA: Methods and Protocols views the transcriptional landscape with an appreciation for the role that proteins play in the processing and interpretation of genetic information in an attempt to further our crucial knowledge of the many products and sophisticated regulatory networks that result from it.
This volume presents protocols that analyze and explore gene regulatory networks (GRNs) at different levels in plants. This book is divided into two parts: Part I introduces different experimental techniques used to study genes and their regulatory interactions in plants. Part II highlights different computational approaches used for the integration of experimental data and bioinformatics-based predictions of regulatory interactions. This part of the book also provides information on essential database resources that grant access to gene-regulatory and molecular interactions in different plant genomes, with a specific focus on Arabidopsis thaliana. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Plant Gene Regulatory Networks: Methods and Protocols is a valuable resource for scientists and researchers interested in expanding their knowledge of GRNs.
This second edition volume discusses the revolutionary development of faster and less expensive DNA sequencing technologies from the past 10 years and focuses on general technologies that can be utilized by a wide array of plant biologists to address specific questions in their favorite model systems. This book is organized into five parts. Part I examines the tools and methods required for identifying epigenetic and conformational changes at the whole-genome level. Part II presents approaches used to determine key aspects of a gene’s function, such as techniques used to identify and characterize gene regulatory networks. This is followed by a discussion of tools used to analyze the levels of mRNA, mRNA translation rates and metabolites. Part III features a compilation of forward and reverse genetic approaches that include recent implementation of high-throughput sequencing in classical methodologies such as QTL mapping. The final two parts explore strategies to facilitate and accelerate the generation and testing of functional DNA elements and basic computational tools used to facilitate the use of systems biology approached by a broad spectrum of plant researchers. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubleshooting and avoiding known pitfalls. Practical and timely, Plant Functional Genomics: Methods and Protocols, Second Edition highlights the latest developments in DNA sequencing technologies that are likely to continue shaping the future of functional genomics.
Protocols used in Molecular Biology is a compilation of several examples of molecular biology protocols. Each example is presented with a concise introduction, materials and chemicals required, a step-by-step procedure and troubleshooting tips. Information about the application of the protocol is also provided. The techniques included in this book are essential to research in the fields of proteomics, genomics, cell culture, epigenetic modification and structural biology. The protocols can also be used by clinical researchers (neuroscientists and oncologists, for example) for medical applications (diagnostics, therapeutics and multidisciplinary projects).
This volume provides a collection of protocols for the study of DNA-DNA contact maps, replication profiles, transcription rates, RNA secondary structures, protein-RNA interactions, ribosome profiling and quantitative proteomes and metabolomes. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Yeast Functional Genomics: Methods and Protocols aims to ensure successful results in the further study of this vital field.
A wide-ranging collection of readily reproducible methods for performing nuclear reprogramming by nuclear transfer in several different species, by fusion through both chemical treatment and electrically shocking cells, and by in vivo treatment of cells with cell extracts. Several methods of monitoring nuclear reprogramming are also presented, including the use of transgenic markers, activation of telomerase as an ES-specific marker, light and electron microscopic observation of structural changes in the nucleus, and verification of surface marker expression and the differentiation potential of stem cells. Biochemical methods are provided for the examination of chromatin protein modifications, nucleosomal footprinting, transcription factor binding, and the study of DNA methylation changes both at the specific locus level and at the level of the whole nucleus.
The effort to sequence the human genome is now moving toward a c- clusion. As all of the protein coding sequences are described, an increasing emphasis will be placed on understanding gene function and regulation. One important aspect of this analysis is the study of how transcription factors re- late transcriptional initiation by RNA polymerase II, which is responsible for transcribing nuclear genes encoding messenger RNAs. The initiation of Class II transcription is dependent upon transcription factors binding to DNA e- ments that include the core or basal promoter elements, proximal promoter elements, and distal enhancer elements. General initiation factors are involved in positioning RNA polymerase II on the core promoter, but the complex - teraction of these proteins and transcriptional activators binding to DNA e- ments outside the core promoter regulate the rate of transcriptional initiation. This initiation process appears to be a crucial step in the modulation of mRNA levels in response to developmental and environmental signals. Transcription Factor Protocols provides step-by-step procedures for key techniques that have been developed to study DNA sequences and the protein factors that regulate the transcription of protein encoding genes. This volume is aimed at providing researchers in the field with the well-detailed protocols that have been the hallmark of previous volumes of the Methods in Molecular TM Biology series.
This volume details methods and protocols to further the study of stem cells within the computational stem cell biology (CSCB) field. Chapters are divided into four sections covering the theory and practice of modeling of stem cell behavior, analyzing single cell genome-scale measurements, reconstructing gene regulatory networks, and metabolomics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Stem Cell Biology: Methods and Protocols will be an invaluable guide to researchers as they explore stem cells from the perspective of computational biology.