Download Free Methods For Integrated Modeling Of Landscape Change Book in PDF and EPUB Free Download. You can read online Methods For Integrated Modeling Of Landscape Change and write the review.

The Interior Northwest Landscape Analysis System (INLAS) links a number of resource, disturbance, and landscape simulations models to examine the interactions of vegetative succession, management, and disturbance with policy goals. The effects of natural disturbance like wildfire, herbivory, forest insects and diseases, as well as specific management actions are included. The outputs from simulations illustrate potential changes in aquatic conditions and terrestrial habitat, potential for wood utilization, and socioeconomic opportunities. The 14 chapters of this document outline the current state of knowledge in each of the areas covered by the INLAS project and describe the objectives and organization of the project. The project explores ways to integrate the effects of natural disturbances and management into planning and policy analyses; illustrate potential conflicts among current policies, natural distrubances, and management activities; and explore the policy, economics, and ecological constraints associated with the application of effective fuel treatments on midscale landscapes in the interior Northwest.
People are constantly changing the land surface through construction, agriculture, energy production, and other activities. Changes both in how land is used by people (land use) and in the vegetation, rock, buildings, and other physical material that cover the Earth's surface (land cover) can be described and future land change can be projected using land-change models (LCMs). LCMs are a key means for understanding how humans are reshaping the Earth's surface in the past and present, for forecasting future landscape conditions, and for developing policies to manage our use of resources and the environment at scales ranging from an individual parcel of land in a city to vast expanses of forests around the world. Advancing Land Change Modeling: Opportunities and Research Requirements describes various LCM approaches, suggests guidance for their appropriate application, and makes recommendations to improve the integration of observation strategies into the models. This report provides a summary and evaluation of several modeling approaches, and their theoretical and empirical underpinnings, relative to complex land-change dynamics and processes, and identifies several opportunities for further advancing the science, data, and cyberinfrastructure involved in the LCM enterprise. Because of the numerous models available, the report focuses on describing the categories of approaches used along with selected examples, rather than providing a review of specific models. Additionally, because all modeling approaches have relative strengths and weaknesses, the report compares these relative to different purposes. Advancing Land Change Modeling's recommendations for assessment of future data and research needs will enable model outputs to better assist the science, policy, and decisionsupport communities.
This book is a printed edition of the Special Issue "Agent-Based Modelling and Landscape Change" that was published in Land
In the summer of 1993, twenty-six graduate and postdoctoral stu dents and fourteen lecturers converged on Cornell University for a summer school devoted to structured-population models. This school was one of a series to address concepts cutting across the traditional boundaries separating terrestrial, marine, and freshwa ter ecology. Earlier schools resulted in the books Patch Dynamics (S. A. Levin, T. M. Powell & J. H. Steele, eds., Springer-Verlag, Berlin, 1993) and Ecological Time Series (T. M. Powell & J. H. Steele, eds., Chapman and Hall, New York, 1995); a book on food webs is in preparation. Models of population structure (differences among individuals due to age, size, developmental stage, spatial location, or genotype) have an important place in studies of all three kinds of ecosystem. In choosing the participants and lecturers for the school, we se lected for diversity-biologists who knew some mathematics and mathematicians who knew some biology, field biologists sobered by encounters with messy data and theoreticians intoxicated by the elegance of the underlying mathematics, people concerned with long-term evolutionary problems and people concerned with the acute crises of conservation biology. For four weeks, these perspec tives swirled in discussions that started in the lecture hall and carried on into the sweltering Ithaca night. Diversity mayor may not increase stability, but it surely makes things interesting.
Invasions by exotic grasses, particularly annuals, rank among the most extensive and intensive ways that humans are contributing to the transformation of the earth’s surface. The problem is particularly notable with a suite of exotic grasses in the Bromus genus in the arid and semiarid regions that dominate the western United States, which extend from the dry basins near the Sierra and Cascade Ranges across the Intermountain Region and Rockies to about 105° longitude. This genus includes approximately 150 species that have a wide range of invasive and non-invasive tendencies in their home ranges and in North America. Bromus species that became invasive upon introduction to North America in the late 1800’s, such as Bromus tectorum and B. rubens, have since became the dominant cover on millions of hectares. Here, millenia of ecosystem development led to landscapes that would otherwise be dominated by perennial shrubs, herbs, and biotic soil crusts that were able to persist in spite of variable and scarce precipitation. This native ecosystem resilience is increasingly coveted by land owners and managers as more hectares lose their resistance to Bromus grasses and similar exotics and as climate, land use, and disturbance-regime changes are also superimposed. Managers are increasingly challenged to glean basic services from these ecosystems as they become invaded. Exotic annual grasses reduce wildlife and livestock carrying capacity and increase the frequency and extent of wildfi res and associated soil erosion. This book uses a unique ecoregional and multidisciplinary approach to evaluate the invasiveness, impacts, and management of the large Bromus genus. Students, researchers, and practitioners interested in Bromus specifically and invasive exotics in general will benefit from the depth of knowledge summarized in the book.
Most projects in Landscape Ecology, at some point, define a species-habitat association. These models are inherently spatial, dealing with landscapes and their configurations. Whether coding behavioral rules for dispersal of simulated organisms through simulated landscapes, or designing the sampling extent of field surveys and experiments in real landscapes, landscape ecologists must make assumptions about how organisms experience and utilize the landscape. These convenient working postulates allow modelers to project the model in time and space, yet rarely are they explicitly considered. The early years of landscape ecology necessarily focused on the evolution of effective data sources, metrics, and statistical approaches that could truly capture the spatial and temporal patterns and processes of interest. Now that these tools are well established, we reflect on the ecological theories that underpin the assumptions commonly made during species distribution modeling and mapping. This is crucial for applying models to questions of global sustainability. Due to the inherent use of GIS for much of this kind of research, and as several authors’ research involves the production of multicolored map figures, there would be an 8-page color insert. Additional color figures could be made available through a digital archive, or by cost contributions of the chapter authors. Where applicable, would be relevant chapters’ GIS data and model code available through a digital archive. The practice of data and code sharing is becoming standard in GIS studies, is an inherent method of this book, and will serve to add additional research value to the book for both academic and practitioner audiences.
This book presents essential case studies on the integrated modelling of ecosystem services and land-use change in the field of landscape ecology. The case studies were mainly conducted in the Zhangye oasis of the Hexi corridor and the upper reaches of the Heihe river basin, including Loess plateau (for wind power) and the inland waterways of the Yangtze River (for the regulation of extreme events). The book puts forward an integrated modelling method, including human activities, natural processes, land-use change, and ecosystem management, and explores multiple scenarios based on the interests of local managers and their implications for ecosystem services. As the book demonstrates, the integrated modelling method for ecosystem services and land-use change can serve as a valuable tool for gauging the impact of various development scenarios in this study area, and in other regions with similar characteristics. In addition, numerous charts and diagrams are included in each chapter, facilitating the simulation and assessment of specific land-use change impacts on ecosystem services in various study areas.
The world consists of many complex systems, ranging from our own bodies to ecosystems to economic systems. Despite their diversity, complex systems have many structural and functional features in common that can be effectively si- lated using powerful, user-friendly software. As a result, virtually anyone can - plore the nature of complex systems and their dynamical behavior under a range of assumptions and conditions. This ability to model dynamic systems is already having a powerful influence on teaching and studying complexity. The books in this series will promote this revolution in “systems thinking” by integrating computational skills of numeracy and techniques of dynamic mod- ing into a variety of disciplines. The unifying theme across the series will be the power and simplicity of the model-building process, and all books are designed to engage the reader in developing their own models for exploration of the dyn- ics of systems that are of interest to them. Modeling Dynamic Systems does not endorse any particular modeling paradigm or software. Rather, the volumes in the series will emphasize simplicity of lea- ing, expressive power, and the speed of execution as priorities that will facilitate deeper system understanding.
Landscapes are characterized by a wide variation, both spatially and temporally, of tolerance and response to natural processes and anthropogenic stress. These tolerances and responses can be analyzed through individual landscape parameters, such as soils, vegetation, water, etc., or holistically through ecosystem or watershed studies. However, such approaches are both time consuming and costly. Soil erosion and landscape evolution modeling provide a simulation environment in which both the short- and long-term consequences of land-use activities and alternative land use strategies can be compared and evaluated. Such models provide the foundation for the development of land management decision support systems. Landscape Erosion and Evolution Modeling is a state-of-the-art, interdisciplinary volume addressing the broad theme of soil erosion and landscape evolution modeling from different philosophical and technical approaches, ranging from those developed from considerations of first-principle soil/water physics and mechanics to those developed empirically according to sets of behavioral or empirical rules deriving from field observations and measurements. The validation and calibration of models through field studies is also included. This volume will be essential reading for researchers in earth, environmental and ecosystem sciences, hydrology, civil engineering, forestry, soil science, agriculture and climate change studies. In addition, it will have direct relevance to the public and private land management communities.