Download Free Methods For Estimation And Inference In Modern Econometrics Book in PDF and EPUB Free Download. You can read online Methods For Estimation And Inference In Modern Econometrics and write the review.

This book covers important topics in econometrics. It discusses methods for efficient estimation in models defined by unconditional and conditional moment restrictions, inference in misspecified models, generalized empirical likelihood estimators, and alternative asymptotic approximations. The first chapter provides a general overview of established nonparametric and parametric approaches to estimation and conventional frameworks for statistical inference. The next several chapters focus on the estimation of models based on moment restrictions implied by economic theory. The final chapters cover nonconventional asymptotic tools that lead to improved finite-sample inference.
Econometric Theory and Methods International Edition provides a unified treatment of modern econometric theory and practical econometric methods. The geometrical approach to least squares is emphasized, as is the method of moments, which is used to motivate a wide variety of estimators and tests. Simulation methods, including the bootstrap, are introduced early and used extensively. The book deals with a large number of modern topics. In addition to bootstrap and Monte Carlo tests, these include sandwich covariance matrix estimators, artificial regressions, estimating functions and the generalized method of moments, indirect inference, and kernel estimation. Every chapter incorporates numerous exercises, some theoretical, some empirical, and many involving simulation.
The aim of this book is to present the main statistical tools of econometrics. It covers almost all modern econometric methodology and unifies the approach by using a small number of estimation techniques, many from generalized method of moments (GMM) estimation. The work is in four parts: Part I sets forth statistical methods, Part II covers regression models, Part III investigates dynamic models, and Part IV synthesizes a set of problems that are specific models in structural econometrics, namely identification and overidentification, simultaneity, and unobservability. Many theoretical examples illustrate the discussion and can be treated as application exercises.
This book had its conception in 1975in a friendly tavern near the School of Businessand PublicAdministration at the UniversityofMissouri-Columbia. Two of the authors (Fomby and Hill) were graduate students of the third (Johnson), and were (and are) concerned about teaching econometrics effectively at the graduate level. We decided then to write a book to serve as a comprehensive text for graduate econometrics. Generally, the material included in the bookand itsorganization have been governed by the question, " Howcould the subject be best presented in a graduate class?" For content, this has meant that we have tried to cover " all the bases " and yet have not attempted to be encyclopedic. The intended purpose has also affected the levelofmathematical rigor. We have tended to prove only those results that are basic and/or relatively straightforward. Proofs that would demand inordinant amounts of class time have simply been referenced. The book is intended for a two-semester course and paced to admit more extensive treatment of areas of specific interest to the instructor and students. We have great confidence in the ability, industry, and persistence of graduate students in ferreting out and understanding the omitted proofs and results. In the end, this is how one gains maturity and a fuller appreciation for the subject in any case. It is assumed that the readers of the book will have had an econometric methods course, using texts like J. Johnston's Econometric Methods, 2nd ed.
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
Economic Modeling and Inference takes econometrics to a new level by demonstrating how to combine modern economic theory with the latest statistical inference methods to get the most out of economic data. This graduate-level textbook draws applications from both microeconomics and macroeconomics, paying special attention to financial and labor economics, with an emphasis throughout on what observations can tell us about stochastic dynamic models of rational optimizing behavior and equilibrium. Bent Jesper Christensen and Nicholas Kiefer show how parameters often thought estimable in applications are not identified even in simple dynamic programming models, and they investigate the roles of extensions, including measurement error, imperfect control, and random utility shocks for inference. When all implications of optimization and equilibrium are imposed in the empirical procedures, the resulting estimation problems are often nonstandard, with the estimators exhibiting nonregular asymptotic behavior such as short-ranked covariance, superconsistency, and non-Gaussianity. Christensen and Kiefer explore these properties in detail, covering areas including job search models of the labor market, asset pricing, option pricing, marketing, and retirement planning. Ideal for researchers and practitioners as well as students, Economic Modeling and Inference uses real-world data to illustrate how to derive the best results using a combination of theory and cutting-edge econometric techniques. Covers identification and estimation of dynamic programming models Treats sources of error--measurement error, random utility, and imperfect control Features financial applications including asset pricing, option pricing, and optimal hedging Describes labor applications including job search, equilibrium search, and retirement Illustrates the wide applicability of the approach using micro, macro, and marketing examples
This book was first published in 2007. The small sample properties of estimators and tests are frequently too complex to be useful or are unknown. Much econometric theory is therefore developed for very large or asymptotic samples where it is assumed that the behaviour of estimators and tests will adequately represent their properties in small samples. Refined asymptotic methods adopt an intermediate position by providing improved approximations to small sample behaviour using asymptotic expansions. Dedicated to the memory of Michael Magdalinos, whose work is a major contribution to this area, this book contains chapters directly concerned with refined asymptotic methods. In addition, there are chapters focusing on new asymptotic results; the exploration through simulation of the small sample behaviour of estimators and tests in panel data models; and improvements in methodology. With contributions from leading econometricians, this collection will be essential reading for researchers and graduate students concerned with the use of asymptotic methods in econometric analysis.
The generalized method of moments (GMM) estimation has emerged as providing a ready to use, flexible tool of application to a large number of econometric and economic models by relying on mild, plausible assumptions. The principal objective of this volume is to offer a complete presentation of the theory of GMM estimation as well as insights into the use of these methods in empirical studies. It is also designed to serve as a unified framework for teaching estimation theory in econometrics. Contributors to the volume include well-known authorities in the field based in North America, the UK/Europe, and Australia. The work is likely to become a standard reference for graduate students and professionals in economics, statistics, financial modeling, and applied mathematics.
In addition to econometric essentials, this book covers important new extensions as well as how to get standard errors right. The authors explain why fancier econometric techniques are typically unnecessary and even dangerous.
This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.