Download Free Methods For Aggregation And Communication Of Life Cycle Inventory Data Within The Framework Of Eco Efficiency Analysis Book in PDF and EPUB Free Download. You can read online Methods For Aggregation And Communication Of Life Cycle Inventory Data Within The Framework Of Eco Efficiency Analysis and write the review.

Life Cycle Inventory (LCI) Analysis is the second phase in the Life Cycle Assessment (LCA) framework. Since the first attempts to formalize life cycle assessment in the early 1970, life cycle inventory analysis has been a central part. Chapter 1 “Introduction to Life Cycle Inventory Analysis“ discusses the history of inventory analysis from the 1970s through SETAC and the ISO standard. In Chapter 2 “Principles of Life Cycle Inventory Modeling”, the general principles of setting up an LCI model and LCI analysis are described by introducing the core LCI model and extensions that allow addressing reality better. Chapter 3 “Development of Unit Process Datasets” shows that developing unit processes of high quality and transparency is not a trivial task, but is crucial for high-quality LCA studies. Chapter 4 “Multi-functionality in Life Cycle Inventory Analysis: Approaches and Solutions” describes how multi-functional processes can be identified. In Chapter 5 “Data Quality in Life Cycle Inventories”, the quality of data gathered and used in LCI analysis is discussed. State-of-the-art indicators to assess data quality in LCA are described and the fitness for purpose concept is introduced. Chapter 6 “Life Cycle Inventory Data and Databases“ follows up on the topic of LCI data and provides a state-of-the-art description of LCI databases. It describes differences between foreground and background data, recommendations for starting a database, data exchange and quality assurance concepts for databases, as well as the scientific basis of LCI databases. Chapter 7 “Algorithms of Life Cycle Inventory Analysis“ provides the mathematical models underpinning the LCI. Since Heijungs and Suh (2002), this is the first time that this aspect of LCA has been fundamentally presented. In Chapter 8 “Inventory Indicators in Life Cycle Assessment”, the use of LCI data to create aggregated environmental and resource indicators is described. Such indicators include the cumulative energy demand and various water use indicators. Chapter 9 “The Link Between Life Cycle Inventory Analysis and Life Cycle Impact Assessment” uses four examples to discuss the link between LCI analysis and LCIA. A clear and relevant link between these phases is crucial.
This book presents specialised methods and tools built on classical LCA. In the first book-length overview, their importance for the further growth and application of LCA is demonstrated for some of the most prominent species of this emerging trend: Carbon footprinting; Water footprinting; Eco-efficiency assessment; Resource efficiency assessment; Input-output and hybrid LCA; Material flow analysis; Organizational LCA. Carbon footprinting was a huge driver for the market expansion of simplified LCA. The discussions led to an ample proliferation of different guidelines and standards including ISO/TS 14067 on Carbon Footprint of Product. Atsushi Inaba (Kogakuin University, Tokyo, Japan) and his eight co-authors provide an up-to-date status of Carbon Footprint of Products. The increasing relevance of Water Footprinting and the diverse methods were the drivers to develop the ISO 14046 as international water footprint standard. Markus Berger (Technische Universität Berlin, Germany), Stephan Pfister (ETH Zurich, Switzerland) and Masaharu Motoshita (Agency of Industrial Science and Technology, Tsukuba, Japan) present a status of water resources and demands from a global and regional perspective. A core part is the discussion and comparison of the different water footprint methods, databases and tools. Peter Saling from BASF SE in Ludwigshafen, Germany, broadens the perspective towards Eco-efficiency Assessment. He describes the BASF-specific type of eco-efficiency analysis plus adaptions like the so-called SEEBALANCE and AgBalance applications. Laura Schneider, Vanessa Bach and Matthias Finkbeiner (Technische Universität Berlin, Germany) address multi-dimensional LCA perspectives in the form of Resource Efficiency Assessment. Research needs and proposed methodological developments for abiotic resource efficiency assessment, and especially for the less developed area of biotic resources, are discussed.The fundamentals ofInput-output and Hybrid LCA are covered by Shinichiro Nakamura (Waseda University, Tokyo, Japan) and Keisuke Nansai (National Institute for Environmental Studies, Tsukuba, Japan). The concepts of environmentally extended IO, different types of hybrid IO-LCA and the waste model are introduced. David Laner and Helmut Rechberger (Vienna University of Technology, Austria) present the basic terms and procedures of Material Flow Analysismethodology. The combination of MFA and LCA is discussed as a promising approach for environmental decision support. Julia Martínez-Blanco (Technische Universität Berlin, Germany; now at Inèdit, Barcelona, Spain), Atsushi Inaba (Kogakuin University, Tokyo, Japan) and Matthias Finkbeiner (Technische Universität Berlin, Germany) introduce a recent development which could develop a new trend, namely the LCA of Organizations.
This book shows for the first time how mental models and values influence conclusions in the life cycle inventory step of LCA. One key finding is that different management rules for a sustainable use of materials must be taken into account for the attribution of material and energy flows to a product. Includes case studies on the modelling of recycling and other end-of-life options of aluminium windows and beech wood railway sleepers in LCA.
The Guidelines for Social Life Cycle Assessment of Products provides a map, a skeleton and a flash light for stakeholders engaging in the assessment of social and socio-economic impacts of products life cycle. The map describes the context, the key concepts, the broader field in which tools and techniques are getting developed and their scope of application. The skeleton presents key elements to consider and provide guidance for the goal and scope, inventory, impact assessment and interpretation phases of a social life cycle assessment. The flash light highlights areas where further research is needed. Social Life Cycle Assessment is a technique available to account for stories and inform systematically on impacts that otherwise would be lost in the vast and fast moving sea of our modern world. May it help stakeholders to effectively and efficiently engage to improve social and socio-economic conditions of production and consumption
Life Cycle assessment (LCA) is a tool for environmental decision-support in relation to products from the cradle to the grave. Until now, more emphasis has been put on the inclusion quantitative models and databases and on the design of guidebooks for applying LCA than on the integrative aspect of combining these models and data. This is a remarkable thing, since LCA in practice deals with thousands of quantitative data items that have to be combined in the correct manner. For this, one needs mathematical rules and algorithmic principles for carrying out an LCA. This book presents the first coherent treatment of the mathematical and algorithmic aspects of LCA. These computational aspects are presented in matrix form, so that a concise and elegant formulation is achieved. This form, moreover, provides a platform for further extension of analysis using perturbation theory, structural theory and economic input-output analysis.
Between 1992 and 2002 environmental life cycle assessment methodology has progressed enormously and the ISO has published a series of Standards on LCA. These developments have now been incorporated into this Handbook on LCA.
This book describes the importance of the goal and scope phase for the entire LCA study. In this first phase of the LCA framework (ISO standardized), the purpose of the assessment is defined and decisions are made about the details of the industrial system being studied and how the study will be conducted. Selecting impact categories, category indicators, characterization models, and peer review is decided during goal and scope definition. The book provides practical guidance and an overview of LCIA methods available in LCA software. Although not specified in the ISO standards, Attributional LCA and Consequential LCA are presented in order to appropriately determine the goal and scope of an assessment. The book closes with the interconnection between goal and scope definition and the interpretation phase. Example goal and scope documents for attributional and consequential LCAs are provided in the annexes.
1.1 Life Cycle Assessment (LeA): a fascinating and sophisticated tool The greening of the economy is not a new task, but it is a challenge for which a lot of tasks still have to be done. It is known that the main source of environ mental deterioration by industry is not any more the chimneys and other process related emissions, but the products and services produced. Products are regarded as carriers of polIution: they are not only a potential source of polIution and waste during their use; they are also a cause of resource depletion, energy consumption, and emissions du ring their life starting with the extraction of the raw materials and ending with their disposal (i.e. connecting production and consumption stages). The challenge of these decades is now the greening of products and services. The new focus on products (cp. OosterhuislRubik/ScholI 1996) was introduced as a policy approach of shared responsibility in which different actors are in volved along the life-cycle of a product, each having specific responsibilities.