Download Free Methodology For Design Analysis Of Reconfigurable Reusable Automotive Assembly Systems Book in PDF and EPUB Free Download. You can read online Methodology For Design Analysis Of Reconfigurable Reusable Automotive Assembly Systems and write the review.

Emerging economies and new ways of doing business are changing the world in a dramatic manner, these changes suggest that new competitive advantages must be created within companies to belong capable to develop customized products and cost effective manufacturing systems. New manufacturing systems are required to créate new generation of manufacturing systems, which must be easy to increase in capacity, easy to update and capable to intégrate, new technologies. All this will allow new products launching successfully, as well as any adaptation to the manufacturing system due to changes demand; it will be possible quickly to intégrate new functions and technologies to the new manufacturing systems, and by consequence the capacities of those systems will adjust to the market necessities and changes. This research proposes a systemic methodology to design reconfígurable manufacturing systems. Reconfigurability is an attribute to develop within companies in order to respond rapidly and cost effective to market demands. The methodology to design manufacturing systems is based on systems engineering life cycle. The methodology is structured in three main phases: Manufacturing System Analysis, Manufacturing System Design and Manufacturing Operations and Maintenance. Manufacturing systems need a degree of reconfigurability since its design and during the operation. The methodology incorporates Digital Manufacturing tools to support strongly the manufacturing systems design. Through the use of these tools it is possible to design manufacturing systems in a virtual environment to minimize error production. The case studies reported in this thesis were developed in an Automotive Manufacturer company. The fírst case is the virtual design of an are weld cell and the second one is the development of a resistance spot weld cell. Both case studies required to give a level of reconfigurability in product, volume, process and layout.
The evolution and execution of automotive manufacturing are explored in this fundamental manual. It is an excellent reference for entry level manufacturing engineers and also serves as a training guide for nonmanufacturing professionals. The book covers the major areas of vehicle assembly manufacturing and addresses common approaches and procedures of the development process. Having held positions as both a University Professor and as a Lead Engineering Specialist in industry, the author draws on his experience in both theory and application to fill the gap between academic research and industrial practices. This concisely written, comprehensive review discusses the sophisticated principles and concepts of automotive manufacturing from development to applications and includes: 250 illustrations and 90 tables. End-of-chapter review questions. Research topics for in-depth case studies, literature reviews, and/or course projects. Analytical problems for additional practice. Directly extracted and summarized from automotive manufacturing practices, this book serves as an essential manual. The subject is complemented by the author’s first book, Automotive Vehicle Assembly Processes and Operations Management, which provides even greater depth to the complex endeavor of modern automotive manufacturing.
Evolving technologies in mass production have led to the development of advanced techniques in the field of manufacturing. These technologies can quickly and effectively respond to various market changes, necessitating processes that focus on small batches of multiple products rather than large, single-product lines. Formal Methods in Manufacturing Systems: Recent Advances explores this shifting paradigm through an investigation of contemporary manufacturing techniques and formal methodologies that strive to solve a variety of issues arising from a market environment that increasingly favors flexible systems over traditional ones. This book will be of particular use to industrial engineers and students of the field who require a detailed understanding of current trends and developments in manufacturing tools. This book is part of the Advances in Civil and Industrial Engineering series collection.
Intelligent technical systems, which combine mechanical, electrical and software engineering with control engineering and advanced mathematics, go far beyond the state of the art in mechatronics and open up fascinating perspectives. Among these systems are so-called self-optimizing systems, which are able to adapt their behavior autonomously and flexibly to changing operating conditions. Self-optimizing systems create high value for example in terms of energy and resource efficiency as well as reliability. The Collaborative Research Center 614 "Self-optimizing Concepts and Structures in Mechanical Engineering" pursued the long-term aim to open up the active paradigm of self-optimization for mechanical engineering and to enable others to develop self-optimizing systems. This book is directed to researchers and practitioners alike. It provides a design methodology for the development of self-optimizing systems consisting of a reference process, methods, and tools. The reference process is divided into two phases the domain-spanning conceptual design and the domain-specific design and development. For the conceptual design a holistic approach is provided. Domain-specific methods and tools developed especially for the design and development of self-optimizing systems are described and illustrated by application examples. This book will enable the reader to identify the potential for self-optimization and to develop self-optimizing systems independently.
This book is about how to develop future automotive products by applying the latest methodologies based on a systems engineering approach and by taking into account many issues facing the auto industry such as meeting government safety, emissions and fuel economy regulations, incorporating advances in new technology applications in structural materials, power trains, vehicle lighting systems, displays and telematics, and satisfying the very demanding customer. It is financially disastrous for any automotive company to create a vehicle that very few people want. To design an automotive product that will be successful in the marketplace requires carefully orchestrated teamwork of experts from many disciplines, substantial amount of resources, and application of proven techniques at the right time during the product development process. Automotive Product Development: A Systems Engineering Implementation is intended for company management personnel and graduate students in engineering, business management and other disciplines associated with the development of automotive and other complex products.