Download Free Methodologies And Algorithms For High Level Synthesis Of Application Specific Processors Book in PDF and EPUB Free Download. You can read online Methodologies And Algorithms For High Level Synthesis Of Application Specific Processors and write the review.

Are you an RTL or system designer that is currently using, moving, or planning to move to an HLS design environment? Finally, a comprehensive guide for designing hardware using C++ is here. Michael Fingeroff's High-Level Synthesis Blue Book presents the most effective C++ synthesis coding style for achieving high quality RTL. Master a totally new design methodology for coding increasingly complex designs! This book provides a step-by-step approach to using C++ as a hardware design language, including an introduction to the basics of HLS using concepts familiar to RTL designers. Each chapter provides easy-to-understand C++ examples, along with hardware and timing diagrams where appropriate. The book progresses from simple concepts such as sequential logic design to more complicated topics such as memory architecture and hierarchical sub-system design. Later chapters bring together many of the earlier HLS design concepts through their application in simplified design examples. These examples illustrate the fundamental principles behind C++ hardware design, which will translate to much larger designs. Although this book focuses primarily on C and C++ to present the basics of C++ synthesis, all of the concepts are equally applicable to SystemC when describing the core algorithmic part of a design. On completion of this book, readers should be well on their way to becoming experts in high-level synthesis.
A comprehensive overview of the current evolution of research in algorithms, architectures and compilation for parallel systems is provided by this publication.The contributions focus specifically on domains where embedded systems are required, either oriented to application-specific or to programmable realisations. These are crucial in domains such as audio, telecom, instrumentation, speech, robotics, medical and automotive processing, image and video processing, TV, multimedia, radar and sonar.The book will be of particular interest to the academic community because of the detailed descriptions of research results presented. In addition, many contributions feature the "real-life" applications that are responsible for driving research and the impact of their specific characteristics on the methodologies is assessed.The publication will also be of considerable value to senior design engineers and CAD managers in the industrial arena, who wish either to anticipate the evolution of commercially available design tools or to utilize the presented concepts in their own R&D programmes.
This book describes several methods and systems solving one of the highlighted problems within computer aided design, namely architectural and logic synthesis. The book emphasises the most recent technologies in high level synthesis, concentrating on applicative studies and practical constraints or criteria during synthesis. Logic and Architecture Synthesis concentrates on the practical problems involving automatic synthesis of designs. It is essential reading for researchers and CAD Managers working in this area.
Designing VLSI systems represents a challenging task. It is a transfonnation among different specifications corresponding to different levels of design: abstraction, behavioral, stntctural and physical. The behavioral level describes the functionality of the design. It consists of two components; static and dynamic. The static component describes operations, whereas the dynamic component describes sequencing and timing. The structural level contains infonnation about components, control and connectivity. The physical level describes the constraints that should be imposed on the floor plan, the placement of components, and the geometry of the design. Constraints of area, speed and power are also applied at this level. To implement such multilevel transfonnation, a design methodology should be devised, taking into consideration the constraints, limitations and properties of each level. The mapping process between any of these domains is non-isomorphic. A single behavioral component may be transfonned into more than one structural component. Design methodologies are the most recent evolution in the design automation era, which started off with the introduction and subsequent usage of module generation especially for regular structures such as PLA's and memories. A design methodology should offer an integrated design system rather than a set of separate unrelated routines and tools. A general outline of a desired integrated design system is as follows: * Decide on a certain unified framework for all design levels. * Derive a design method based on this framework. * Create a design environment to implement this design method.
The fields of computer vision and image processing are constantly evolving as new research and applications in these areas emerge. Staying abreast of the most up-to-date developments in this field is necessary in order to promote further research and apply these developments in real-world settings. Computer Vision: Concepts, Methodologies, Tools, and Applications is an innovative reference source for the latest academic material on development of computers for gaining understanding about videos and digital images. Highlighting a range of topics, such as computational models, machine learning, and image processing, this multi-volume book is ideally designed for academicians, technology professionals, students, and researchers interested in uncovering the latest innovations in the field.
This book presents an excellent collection of contributions addressing different aspects of high-level synthesis from both industry and academia. It includes an overview of available EDA tool solutions and their applicability to design problems.
The time has come for high-level synthesis. When research into synthesizing hardware from abstract, program-like de scriptions started in the early 1970' s, there was no automated path from the register transfer design produced by high-level synthesis to a complete hardware imple mentation. As a result, it was very difficult to measure the effectiveness of high level synthesis methods; it was also hard to justify to users the need to automate architecture design when low-level design had to be completed manually. Today's more mature CAD techniques help close the gap between an automat ically synthesized design and a manufacturable design. Market pressures encour age designers to make use of any and all automated tools. Layout synthesis, logic synthesis, and specialized datapath generators make it feasible to quickly imple ment a register-transfer design in silicon,leaving designers more time to consider architectural improvements. As IC design becomes more automated, customers are increasing their demands; today's leading edge designers using logic synthesis systems are training themselves to be tomorrow's consumers of high-level synthe sis systems. The need for very fast turnaround, a competitive fabrication market WhlCh makes small-quantity ASIC manufacturing possible, and the ever growing co:n plexity of the systems being designed, all make higher-level design automaton inevitable.
Advances in signal and image processing together with increasing computing power are bringing mobile technology closer to applications in a variety of domains like automotive, health, telecommunication, multimedia, entertainment and many others. The development of these leading applications, involving a large diversity of algorithms (e.g. signal, image, video, 3D, communication, cryptography) is classically divided into three consecutive steps: a theoretical study of the algorithms, a study of the target architecture, and finally the implementation. Such a linear design flow is reaching its limits due to intense pressure on design cycle and strict performance constraints. The approach, called Algorithm-Architecture Matching, aims to leverage design flows with a simultaneous study of both algorithmic and architectural issues, taking into account multiple design constraints, as well as algorithm and architecture optimizations, that couldn’t be achieved otherwise if considered separately. Introducing new design methodologies is mandatory when facing the new emerging applications as for example advanced mobile communication or graphics using sub-micron manufacturing technologies or 3D-Integrated Circuits. This diversity forms a driving force for the future evolutions of embedded system designs methodologies. The main expectations from system designers’ point of view are related to methods, tools and architectures supporting application complexity and design cycle reduction. Advanced optimizations are essential to meet design constraints and to enable a wide acceptance of these new technologies. Algorithm-Architecture Matching for Signal and Image Processing presents a collection of selected contributions from both industry and academia, addressing different aspects of Algorithm-Architecture Matching approach ranging from sensors to architectures design. The scope of this book reflects the diversity of potential algorithms, including signal, communication, image, video, 3D-Graphics implemented onto various architectures from FPGA to multiprocessor systems. Several synthesis and resource management techniques leveraging design optimizations are also described and applied to numerous algorithms. Algorithm-Architecture Matching for Signal and Image Processing should be on each designer’s and EDA tool developer’s shelf, as well as on those with an interest in digital system design optimizations dealing with advanced algorithms.
This book offers an in-depth study of the design and challenges addressed by a high-level synthesis tool targeting a specific class of cryptographic kernels, i.e. symmetric key cryptography. With the aid of detailed case studies, it also discusses optimization strategies that cannot be automatically undertaken by CRYKET (Cryptographic kernels toolkit. The dynamic nature of cryptography, where newer cryptographic functions and attacks frequently surface, means that such a tool can help cryptographers expedite the very large scale integration (VLSI) design cycle by rapidly exploring various design alternatives before reaching an optimal design option. Features include flexibility in cryptographic processors to support emerging cryptanalytic schemes; area-efficient multinational designs supporting various cryptographic functions; and design scalability on modern graphics processing units (GPUs). These case studies serve as a guide to cryptographers exploring the design of efficient cryptographic implementations.
For the new millenium, Wai-Kai Chen introduced a monumental reference for the design, analysis, and prediction of VLSI circuits: The VLSI Handbook. Still a valuable tool for dealing with the most dynamic field in engineering, this second edition includes 13 sections comprising nearly 100 chapters focused on the key concepts, models, and equations. Written by a stellar international panel of expert contributors, this handbook is a reliable, comprehensive resource for real answers to practical problems. It emphasizes fundamental theory underlying professional applications and also reflects key areas of industrial and research focus. WHAT'S IN THE SECOND EDITION? Sections on... Low-power electronics and design VLSI signal processing Chapters on... CMOS fabrication Content-addressable memory Compound semiconductor RF circuits High-speed circuit design principles SiGe HBT technology Bipolar junction transistor amplifiers Performance modeling and analysis using SystemC Design languages, expanded from two chapters to twelve Testing of digital systems Structured for convenient navigation and loaded with practical solutions, The VLSI Handbook, Second Edition remains the first choice for answers to the problems and challenges faced daily in engineering practice.