Download Free Method Of Moments For 2d Scattering Problems Book in PDF and EPUB Free Download. You can read online Method Of Moments For 2d Scattering Problems and write the review.

Electromagnetic wave scattering from randomly rough surfaces in the presence of scatterers is an active, interdisciplinary area of research with myriad practical applications in fields such as optics, acoustics, geoscience and remote sensing. In this book, the Method of Moments (MoM) is applied to compute the field scattered by scatterers such as canonical objects (cylinder or plate) or a randomly rough surface, and also by an object above or below a random rough surface. Since the problem is considered to be 2D, the integral equations (IEs) are scalar and only the TE (transverse electric) and TM (transverse magnetic) polarizations are addressed (no cross-polarizations occur). In Chapter 1, the MoM is applied to convert the IEs into a linear system, while Chapter 2 compares the MoM with the exact solution of the field scattered by a cylinder in free space, and with the Physical Optics (PO) approximation for the scattering from a plate in free space. Chapter 3 presents numerical results, obtained from the MoM, of the coherent and incoherent intensities scattered by a random rough surface and an object below a random rough surface. The final chapter presents the same results as in Chapter 3, but for an object above a random rough surface. In these last two chapters, the coupling between the two scatterers is also studied in detail by inverting the impedance matrix by blocks. Contents 1. Integral Equations for a Single Scatterer: Method of Moments and Rough Surfaces. 2. Validation of the Method of Moments for a Single Scatterer. 3. Scattering from Two Illuminated Scatterers. 4. Scattering from Two Scatterers Where Only One is Illuminated. Appendix. Matlab Codes. About the Authors Christophe Bourlier works at the IETR (Institut d’Electronique et de Télécommunications de Rennes) laboratory at Polytech Nantes (University of Nantes, France) as well as being a Researcher at the French National Center for Scientific Research (CNRS) on electromagnetic wave scattering from rough surfaces and objects for remote sensing applications and radar signatures. He is the author of more than 160 journal articles and conference papers. Nicolas Pinel is currently working as a Research Engineer at the IETR laboratory at Polytech Nantes and is about to join Alyotech Technologies in Rennes, France. His research interests are in the areas of radar and optical remote sensing, scattering and propagation. In particular, he works on asymptotic methods of electromagnetic wave scattering from random rough surfaces and layers. Gildas Kubické is in charge of the “Expertise in electroMagnetism and Computation” (EMC) laboratory at the DGA (Direction Générale de l’Armement), French Ministry of Defense, where he works in the field of radar signatures and electromagnetic stealth. His research interests include electromagnetic scattering and radar cross-section modeling.
The accuracy of moment method solutions to electromagnetic scattering problems has been studied by many researchers. Error bounds for the moment method have been obtained in terms of Sobolev norms of the current solution. Motivated by the historical origins of Sobolev spaces as energy spaces, it is shown that the Sobolev norm used in these bounds is equivalent to the forward scattering amplitude, for the case of 2D scattering from a PEC circular cylinder. A slightly weaker relationship is obtained for 3D scattering from a PEC sphere. These results provide a physical meaning for abstract solution error bounds in terms of the power radiated by the error in the current solution. It is further shown that bounds on the Sobolev norm of the current error imply a bound on the error in the computed backscattering amplitude.
Learn how to quickly solve electromagnetic scattering problems using the Moment Method with this valuable self-study package. The clearly written book provides examples of Moment Method problems, reviews the numerical techniques required to solve them, and demonstrates the use of the moment method in solving scattering from basic shapes, including: wires, two-dimensional strips and contours, and flat plates.
In this book, the authors focus on the concrete aspects of IoT (Internet of Things): the daily operation, on the ground, of this domain, including concrete and detailed discussion of the designs, applications and realizations of Secure Connected Things and IoT. As experts in the development of RFID and IoT technologies, the authors offer the reader a highly technical discussion of these topics, including the many approaches (technical, security, safety, ergonomic, economic, normative, regulations, etc.) involved in Secure Connected Objects projects. This book is written both for readers wishing to familiarize themselves with the complex issues surrounding networking objects and for those who design these connective "things".
This book is dedicated to the study of the theory of electromagnetism. It is not intended to cover all aspects of the topic, but instead will give a certain perspective, that of its relationship with special relativity. Indeed, special relativity is intrinsic to electromagnetism; thus, this paradigm eliminates some false paradoxes. Electromagnetism also discusses the limit of classical mechanics, and covers problems that arise when phenomena related to the propagation of electromagnetic waves are encountered. These are problems that even the greatest scientists of the last two hundred years have not been able to entirely overcome. This book is directed towards the undergraduate level, and will also support the readers as they move on to advanced technical training, such as an engineering or master’s degree.
This book describes different theoretical models developed to identify the near and mid infrared (IR) spectra of diatomic molecules isolated in the gas phase or subjected to environmental constraints, useful for the study of environmental sciences, planetology and astrophysics. The applications presented show how molecular interactions modify the near and mid IR spectra of isolated diatomics under the effect of pressure, a nano-cage (substitution site, Clathrate, Fullerene, Zeolite) or surfaces, to identify the characteristics of the perturbing environment.
This book is an edited volume of nine papers covering the different variants of the generalized multipole techniques (GMT). The papers were presented at the recent 3rd Workshop on Electromagnetics and Light Scattering - Theory and Applications, which focused on current GMT methods. These include the multiple multipole method (MMP), the discrete sources method (DSM), Yasuura's method, method of auxiliary sources and null-field method with discrete sources. Each paper presents a full theoretical description as well as some applications of the method in electrical engineering and optics. It also includes both 2D and 3D methods and other applications developed in the former Soviet Union and Japan.
In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique. Different enhancement procedures are investigated and introduced toward the construction of this technique. These procedures are the following: 1) a hybrid technique combining the IMR technique and a method of moment technique is found to be efficient in producing accurate results with a remarkable computer memory saving; 2) the IMR technique is implemented on a parallel platform that led to a tremendous computational time saving; 3) together, the multigrid technique and the incomplete lower and upper preconditioner are used with the IMR technique to speed up the convergence rate of the final solution, which reduces the total computational time. Thus, the proposed iterative technique, in conjunction with the enhancement procedures, introduces a novel approach to solving large open-boundary electromagnetic problems including unconnected objects in an efficient and robust way. Contents: Basics of the FDFD Method / IMR Technique for Large-Scale Electromagnetic Scattering Problems: 3D Case / IMR Technique for Large-Scale Electromagnetic Scattering Problems: 2D Case / The IMR Algorithm Using a Hybrid FDFD and Method of Moments Technique / Parallelization of the Iterative Multiregion Technique / Combined Multigrid Technique and IMR Algorithm / Concluding Remarks / Appendices
Electromagnetic wave scattering from random rough surfaces is an active, interdisciplinary area of research with myriad practical applications in fields such as optics, acoustics, geoscience and remote sensing. Focusing on the case of random rough surfaces, this book presents classical asymptotic models used to describe electromagnetic wave scattering. The authors begin by outlining the basic concepts relevant to the topic before moving on to look at the derivation of the scattered field under asymptotic models, based on the Kirchhoff-tangent plane, in order to calculate both the scattered field and the statistical average intensity. More elaborated asymptotic models are also described for dealing with specific cases, and numerical results are presented to illustrate these models. Comparisons with a reference numerical method are made to confirm and refine the theoretical validity domains. The final chapter derives the expressions of the scattering intensities of random rough surfaces under the asymptotic models. Its expressions are given for their incoherent contributions, from statistical calculations. These results are then compared with numerical computations using a Monte-Carlo process, as well as with experimental models, for sea surface backscattering. Contents 1. Electromagnetic Wave Scattering from Random Rough Surfaces: Basics. 2. Derivation of the Scattered Field under Asymptotic Models. 3. Derivation of the Normalized Radar Cross-Section under Asymptotic Models. APPENDIX 1. Far-Field Scattered Fields under the Method of Stationary Phase. APPENDIX 2. Calculation of the Scattering Coefficients under the GO for 3D Problems. About the Authors Nicolas Pinel worked as a Research Engineer at the IETR (Institut d’Electronique et de Télécommunications de Rennes) laboratory at Polytech Nantes (University of Nantes, France) before joining Alyotech Technologies in Rennes, France, in July 2013. His research interests are in the areas of radar and optical remote sensing, scattering and propagation. In particular, he works on asymptotic methods of electromagnetic wave scattering from random rough surfaces and layers. Christophe Bourlier works at the IETR (Institut d’Electronique et de Télécommunications de Rennes) laboratory at Polytech Nantes (University of Nantes, France) and is also a Researcher at the French National Center for Scientific Research (CNRS) on electromagnetic wave scattering from rough surfaces and objects for remote sensing applications and radar signatures. He is the author of more than 160 journal articles and conference papers.
Thema des Buches ist die Elementarwellen- (Wavelet-) -Theorie (Zeit-Frequenz-Analyse), ein Grenzgebiet zwischen Mathematik und Ingenieurwissenschaften. - viele Anwendungen in der Elektronik, darunter Antennentheorie und drahtlose Kommunikation - erstes Buch, das die Wavelet-Theorie auf elektromagnetische Phänomene und auf die Modellierung von Halbleiterbauelementen anwendet