Download Free Methane Hydrates In Quaternary Climate Change Book in PDF and EPUB Free Download. You can read online Methane Hydrates In Quaternary Climate Change and write the review.

Recent discoveries from ice-core and marine sediments suggest that global climate systems can change from glacial to near-interglacial temperatures within decades. In order to explain this phenomenon, the authors (all affiliated with the Department of Geological Sciences, U. of California) advance a hypothesis that suggests that the massive energy needed for these changes came for the release of "frozen" methane hydrates (clathrates) stored in marine sediments on continental margins. They argue that the release of the methane caused feedback processes that would explain the surprisingly rapid changes. Annotation copyrighted by Book News, Inc., Portland, OR.
Methane hydrate is a natural form of clathrate - a chemical substance in which one molecule forms a lattice around a "guest" molecule with chemical bonding. In this clathrate, the guest molecule is methane and the lattice is formed by water to form an ice-like solid. Methane hydrate has become the focus of international attention because of the vast potential for human use worldwide. If methane can be produced from hydrate, a reasonable assumption given that there are no obvious technical or engineering roadblocks to commercial production, the nation's natural gas energy supply could be extended for many years to come. This report reviews the Department of Energy's (DOE) Methane Hydrate Research and Development Program, the project selection process, and projects funded to date. It makes recommendations on how the DOE program could be improved. Key recommendations include focusing DOE program emphasis and research in 7 priority areas; incorporating greater scientific oversight in the selection, initiation, monitoring, and assessment of major projects funded by the DOE; strengthening DOE's contribution to education and training through funding of fellowships, and providing project applicants with a set of instructions and guidelines outlining requirements for timely and full disclosure of project results and consequences of noncompliance.
Gas hydrates are both a huge energy resource and an environmental challenge. They have a significant impact on society because of their applications to the future of energy, protection of the environment and fuel transportation. Gas Hydrates opens up this fascinating, multidisciplinary field to non-specialists. It provides a scientific study of gas hydrates that considers their potential as an energy source while assessing the possible risk to the environment. The authors also examine the feasibility of using these natural compounds for storing and transporting gases such as methane and carbon dioxide. Diagrams and photos are used throughout Gas Hydrates to help readers understand the scientific and technical content. Each section has been designed so it can be read independently by academics and professionals in the oil and gas industry, as well as by all those with an interest in how hydrates combine to be an energy resource, an industrial challange and a geological hazard.
In March 2013, Japanese researchers announced a breakthrough in the extraction of natural gas from methane hydrates. This marked the latest important development in the quest for energy from methane hydrate, known as the ice that burns. This book presents a comprehensive collection of up-to-date publications about this vital new resource, covering all aspects of the field, including the possible effects of hydrate gas production on climate change. Contents include: Energy Resource Potential of Methane Hydrate; Methane Hydrate Program Report to Congress - October 2012; Interagency Coordination on Methane Hydrates R&D: Demonstrating the Power of Working Together; Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change; Report to Congress - An Assessment of the Methane Hydrate Research Program and An Assessment of the 5-Year Research Plan of the Department of Energy Prepared by the Federal Methane Hydrate Advisory Committee - June 2007; An Interagency Roadmap for Methane Hydrate Research and Development; Methane Hydrates R&D Program. Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth. While global estimates vary considerably, the energy content of methane occurring in hydrate form is immense, possibly exceeding the combined energy content of all other known fossil fuels. The U.S. Department of Energy methane hydrate program aims to develop the tools and technologies to allow environmentally safe methane production from arctic and domestic offshore hydrates. The program includes R&D in: Production Feasibility: Methane hydrates occur in large quantities beneath the permafrost and offshore, on and below the seafloor. DOE R&D is focused on determining the potential and environmental implications of production of natural gas from hydrates. Research and Modeling: DOE is studying innovative ways to predict the location and concentration of subsurface methane hydrate before drilling. DOE is also conducting studies to understand the physical properties of gas hydrate-bearing strata and to model this understanding at reservoir scale to predict future behavior and production. Climate Change: DOE is studying the role of methane hydrate formation and dissociation in the global carbon cycle. Another aspect of this research is incorporating GH science into climate models to understand the relationship between global warming and methane hydrates.
This second edition provides extensive information on the attributes of the Natural Gas Hydrate (NGH) system, highlighting opportunities for the innovative use and modification of existing technologies, as well as new approaches and technologies that have the potential to dramatically lower the cost of NGH exploration and production. Above all, the book compares the physical, environmental, and commercial aspects of the NGH system with those of other gas resources. It subsequently argues and demonstrates that natural gas can provide the least expensive energy during the transition to, and possibly within, a renewable energy future, and that NGH poses the lowest environmental risk of all gas resources. Intended as a non-mathematical, descriptive text that should be understandable to non-specialists as well as to engineers concerned with the physical characteristics of NGH reservoirs and their production, the book is written for readers at the university graduate level. It offers a valuable reference guide for environmentalists and the energy community, and includes discussions that will be of great interest to energy industry professionals, legislators, administrators, regulators, and all those concerned with energy options and their respective advantages and disadvantages.
This book reviews advances in understanding of the past ca. two million years of Earth history - the Quaternary Period - in the United States. It begins with sections on ice and water - as glaciers, permafrost, oceans, rivers, lakes, and aquifers. Six chapters are devoted to the high-latitude Pleistocene ice sheets, to mountain glaciations of the western United States, and to permafrost studies. Other chapters discuss ice-age lakes, caves, sea-level fluctuations, and riverine landscapes. With a chapter on landscape evolution models, the book turns to essays on geologic processes. Two chapters discuss soils and their responses to climate, and wind-blown sediments. Two more describe volcanoes and earthquakes, and the use of Quaternary geology to understand the hazards they pose. The next part of the book is on plants and animals. Five chapters consider the Quaternary history of vegetation in the United States. Other chapters treat forcing functions and vegetation response at different spatial and temporal scales, the role of fire as a catalyst of vegetation change during rapid climate shifts, and the use of tree rings in inferring age and past hydroclimatic conditions. Three chapters address vertebrate paleontology and the extinctions of large mammals at the end of the last glaciation, beetle assemblages and the inferences they permit about past conditions, and the peopling of North America. A final chapter addresses the numerical modeling of Quaternary climates, and the role paleoclimatic studies and climatic modeling has in predicting future response of the Earth's climate system to the changes we have wrought.
Hardcover plus CD
Gas hydrates in their natural environment and for potential industrial applications (Volume 2).
This book provides an understanding of the role of human activities in accelerating change in global carbon cycling summarizes current knowledge of the contemporary carbon budget. Starting from the geological history, this volume follows a multidisciplinary approach to analyze the role of human activities in perturbing carbon cycling by quantifying changes in different reservoirs and fluxes of carbon with emphasis on the anthropogenic activities, especially after the industrial revolution. It covers the role of different mitigation options – natural ecological, engineered, and geoengineered processes as well as the emerging field of climate engineering in avoiding dangerous abrupt climate change. Although the targeted audience is the educators, students, researchers and scientific community, the simplified analysis and synthesis of current and up to date scientific literature makes the volume easier to understand and a tool policy makers can use to make an informed policy decisions.