Download Free Methane Emissions From Major Rice Ecosystems In Asia Book in PDF and EPUB Free Download. You can read online Methane Emissions From Major Rice Ecosystems In Asia and write the review.

Rice production is affected by changing climate conditions and has the dual role of contributing to global warming through emissions of the greenhouse gas methane. Climate change has been recognized as a major threat to the global environment. Because of insufficient field data, rice-growing countries face a problem when trying to comply with the United Nations Framework Convention on Climate Change stipulations to compile a national inventory of emissions and to explore mitigation options. Given the expected doubling in rice production in Asia, the need to evaluate the interaction between climate change and rice production is critical to forming a sound basis for future directions of technology developments by policy makers, agriculturists, environmentalists, rice producers, and rice consumers. The present book comprises two sections. The first part documents a comprehensive overview of the results achieved from an interregional research effort to quantify methane emission from major rice ecosystems and to identify efficient mitigation options. This research report broadens understanding of the contribution of rice cultivation to methane emissions and clarifies that emissions are relatively low, except in specific rice ecosystems, and that these high emissions could be ameliorated without sacrificing yield. The second section shows results from other projects that investigated the role of rice cultivators in field and laboratory approaches. The findings represent inputs for future modeling approaches in the role of rice cultivators. The expanded database generated by other projects is reflected in modeling efforts.
​The risks and consequences of environmental change are increasing, leading to massive losses in terms of ecosystems and having a huge impact on human populations. As such, global thinkers, environmentalists, scientists and policy makers are focusing on finding solutions and ways to sustain life on Earth. Anthropogenic impacts on the climate system can only be mitigated by the restoration of existing natural resources and the sustainable development of the environment and society. This book discusses the potential of green technology in waste management, wetland restoration, presenting the latest developments in the field of bioenergy, green ecology, bioremediation and microbial management. Wetlands are one of Earth’s most important ecosystems, and they provide valuable services to human societies, such as minimizing the impacts of floods, acting as a carbon sink, and offering water purification as well as recreational opportunities. Wetlands may be natural or constructed, and the effectiveness of wetland services largely depends on the diversity of macrophytes affecting the algal production, plant biomass and nutrient status of the system. In addition, they are one of the richest microbial ecosystems on earth: the rhizosphere, soil and water interface enhances wetland services with implications ranging from phytoremediation to microbial bioprospection. However, in order to function properly, they need to be effectively redesigned, reengineered, protected and maintained. The book addresses the dynamic relation between three global concerns: environmental pollution, resource exploitation and sustainability. It describes the utilization of resources like wastes (municipal, industrial, agricultural, mine drainage, tannery, solid, and e waste), plants, algae and microbes for production of renewable biofuel, biofertilizers and other value added products to achieve the goal of sustainable development. The book also discusses the current and future trends in employing wetlands in improving water quality. In addition it presents the latest international research in the fields of wetland science, waste management, carbon sequestration and bioremediation. Highlighting a broad spectrum of topics and strategies for achieving a sustainable environment, the book offers researchers, students and academics insights into utilizing resources in a sustainable way.
The long-awaited second edition of this classic textbook expands on the first edition to include advances made in the last four decades, bringing the topic completely up to date. The book addresses critical issues such as whether humanity can feed itself, and whether it can do so in environmentally sound and sustainable ways. Written from agronomic, environmental, and ecological standpoints, the textbook employs a multidisciplinary approach, including policymaking and plant genetic improvements, as well as ecosystem services, climate change, biodiversity, sustainability and resilience. New chapters in this second edition focus on organic carbon in soil, soil biology, soils in relation to livestock production and forestry, and agroforestry. The new edition will again be the go-to textbook for courses on tropical soils, and a reference textbook for soil and agricultural scientists and development professionals working in the tropics.
The book quantifies the impact of climate change on rice production using crop simulation models and integrates existing knowledge of the effects of increased levels of carbon dioxide and temperature. Detailed scenarios are provided for selected major rice-producing countries in Asia: Japan, India, Malaysia, South Korea, China and the Philippines.
Submerged soils and the wetlands they support are of huge practical importance: in global element cycles, as centres of biodiversity, in global food production. They are also uniquely interesting scientifically because of their peculiar biogeochemistry and the adaptations of plants and microbes to it. This book describes the physical, chemical and biological processes operating in submerged soils and governing their properties. It describes the transport processes controlling the fluxes of gases and solutes through the soil; the interchange of solutes between solid, liquid and gas phases; reduction and oxidation processes; biological processes in the soil and overlying water; and processes in the roots and rhizospheres of wetland plants. The dynamics of nutrients, toxins, pollutants and trace gases are then discussed in terms of these processes and in relation to wetland productivity and global element cycles. Written by a renowned expert in the field, this work will be invaluable to earth, environmental and agricultural scientists concerned with natural or man-made wetlands, and to advanced undergraduate and graduate studen ts of these topics.
This open access book asks just how climate-smart our food really is. It follows an average day's worth of food and drink to see where it comes from, how far it travels, and the carbon price we all pay for it. From our breakfast tea and toast, through breaktime chocolate bar, to take-away supper, Dave Reay explores the weather extremes the world’s farmers are already dealing with, and what new threats climate change will bring. Readers will encounter heat waves and hurricanes, wildfires and deadly toxins, as well as some truly climate-smart solutions. In every case there are responses that could cut emissions while boosting resilience and livelihoods. Ultimately we are all in this together, our decisions on what food we buy and how we consume it send life-changing ripples right through the global web that is our food supply. As we face a future of 10 billion mouths to feed in a rapidly changing climate, it’s time to get to know our farmers and herders, our vintners and fisherfolk, a whole lot better.
Over the past 50 years, cereals such as maize, rice, wheat, sorghum, and barley have emerged as rapidly evolving crops because of new technologies and advances in agronomy, breeding, biotechnology, genetics, and so on. Population growth and climate change have led to new challenges, among which are feeding the growing global population and mitigating adverse effects on the environment. One way to deal with these issues is through sustainable cereal production. This book discusses ways to achieve sustainable production of cereals via agronomy, breeding, transcriptomics, proteomics, and metabolomics. Chapters review research, examine challenges, and present prospects in the field. This volume is an excellent resource for students, researchers, and scientists interested and working in the area of sustainable crop production.
This compilation has been designed to provide a comprehensive source of theoretical and practical update for scientists working in the broad field of soil science. The book explores all possible mechanisms and means to improve nutrient use efficiencies involving developing and testing of nanofertilizers, developing consortia based microbial formulations for mobilization of soil nutrients, and engineering of nutrient efficient crops using molecular biology and biotechnological tools. This is an all-inclusive collection of information about soil science. This book is of interest to teachers, researchers, soil scientists, capacity builders and policymakers. Also the book serves as additional reading material for undergraduate and graduate students of soil science, quantitative ecology, earth sciences, GIS and geodetic sciences, as well as geologists, geomorphologists, hydrologists and landscape ecology. National and international agriculture and soil scientists, policy makers will also find this to be a useful read.
Rice production is affected by changing climate conditions and has the dual role of contributing to global warming through emissions of the greenhouse gas methane. Climate change has been recognized as a major threat to the global environment. Because of insufficient field data, rice-growing countries face a problem when trying to comply with the United Nations Framework Convention on Climate Change stipulations to compile a national inventory of emissions and to explore mitigation options. Given the expected doubling in rice production in Asia, the need to evaluate the interaction between climate change and rice production is critical to forming a sound basis for future directions of technology developments by policy makers, agriculturists, environmentalists, rice producers, and rice consumers. The present book comprises two sections. The first part documents a comprehensive overview of the results achieved from an interregional research effort to quantify methane emission from major rice ecosystems and to identify efficient mitigation options. This research report broadens understanding of the contribution of rice cultivation to methane emissions and clarifies that emissions are relatively low, except in specific rice ecosystems, and that these high emissions could be ameliorated without sacrificing yield. The second section shows results from other projects that investigated the role of rice cultivators in field and laboratory approaches. The findings represent inputs for future modeling approaches in the role of rice cultivators. The expanded database generated by other projects is reflected in modeling efforts.