Download Free Meteorite Research Book in PDF and EPUB Free Download. You can read online Meteorite Research and write the review.

The Symposium 'Meteorite Research' was conceived originally at the second meeting of the UNESCO Working Group on Meteorites, held in Paris October 18-20, 1965, under the chairmanship of Professor J. Orce!' In addition to the Chairman the fol lowing were present: Dr. G. Harbottle, Dr. M. H. Hey, Dr. B. H. Mason, Dr. P. M. Millman, Professor K. I. Sztr6kay. Dr. E. M. Fournier d'Albe represented the UNESCO Secretariat. Recommendation No.4 from the minutes of this meeting reads as follows: "The Working Group, in view ofthe need to strengthen international co-operation in meteorite research, asks that the International Atomic Energy Agency be requested to consider the possibility of organizing, in 1968, an interdisciplinary conference on meteorites, in collaboration with UNESCO and the appropriate international scientific organizations." After approval in principle of this recommendation had been secured from various international agencies and unions, plans for the symposium were consolidated at the third and final meeting of the Working Group, held in Paris October 12-14, 1966, the members in attendance being the same as for the second meeting.
Bill Cassidy has led meteorite recovery expeditions in the Antarctic for many years. His searches have resulted in the collection of thousands of meteorite specimens from the ice. This fascinating story is a first-hand account of his field experiences on the US Antarctic Search for Meteorites Project, which he carried out as part of an international team of scientists. Cassidy describes this hugely successful field program in Antarctica and its influence on our understanding of the moon, Mars and the asteroid belt. In this 2003 book, he describes the hardships and dangers of fieldwork in a hostile environment, as well as the appreciation he developed for the beauty of the place. In the final chapters he speculates on the results of the trips and the future research they might lead to.
Explore the universe and immerse yourself in the story of our solar system, planet, and life through meteorites. "Meteorite is a treasure"--Wall Street Journal Meteorites have long been seen as portents of fate and messages from the gods, their fiery remains inspiring worship and giving rise to legends that have persisted for millennia. But beyond the lore, meteorites tell an even greater story: that of our solar system. In Meteorite, geologist Tim Gregory shows that beneath the charred crusts of these celestial stones lies a staggering diversity of rock types. Their unique constituents, vibrant colors, and pungent smells contain thrilling tales of interstellar clouds, condensing stardust, and the fiery collisions of entire worlds. Gregory explores the world of meteorites to uncover new insights into what our solar system was like before our sun became a star, into the forging of our planet, and into the emergence of life on it. Humans have long looked to the skies for answers to big questions. Meteorite reveals how science is finally arriving at those answers.
A comprehensive summary of the mineralogy of all meteorite groups and the origin of their minerals.
This Special Publication has 24 papers with an international authorship, and is prefaced by an introductory overview which presents highlights in the field. The first section covers the acceptance by science of the reality of the falls of rock and metal from the sky, an account that takes the reader from BCE (before common era) to the nineteenth century. The second section details some of the world's most important collections in museums - their origins and development. The Smithsonian chapter also covers the astonishingly numerous finds in the cold desert of Antarctica by American search parties. There are also contributions covering the finds by Japanese parties in the Yamato mountains and the equally remarkable discoveries in the hot deserts of Australia, North Africa, Oman and the USA. The other seven chapters take the reader through the revolution in scientific research on meteoritics in the later part of the twentieth century, including terrestrial impact cratering and extraordinary showers of glass from the sky; tektites, now known to be Earth-impact-sourced. Finally, the short epilogue looks to the future.
Primitive Meteorites and Asteroids: Physical, Chemical, and Spectroscopic Observations Paving the Way to Exploration covers the physical, chemical and spectroscopic aspects of asteroids, providing important data and research on carbonaceous chondrites and primitive meteorites. This information is crucial to the success of missions to parent bodies, thus contributing to an understanding of the early solar system. The book offers an interdisciplinary perspective relevant to many fields of planetary science, as well as cosmochemistry, planetary astronomy, astrobiology, geology and space engineering. Including contributions from planetary and missions scientists worldwide, the book collects the fundamental knowledge and cutting-edge research on carbonaceous chondrites and their parent bodies into one accessible resource, thus contributing to the future of space exploration. - Presents the most current data and information on the mission-relevant characteristics of primitive asteroids - Addresses the physical, chemical and spectral characteristics of carbonaceous chondritic meteorites and the bearings on successful exploration of their parent asteroids - Includes chapters on geotechnical properties and resource extraction
Meteorites are fascinating cosmic visitors. Using accessible language, this book documents the history of mineralogy and meteorite research, summarizes the mineralogical characteristics of the myriad varieties of meteorites, and explains the mineralogical characteristics of Solar System bodies visited by spacecraft. Some of these bodies contain minerals that do not occur naturally on Earth or in meteorites. The book explains how to recognize different phases under the microscope and in back-scattered electron images. It summarizes the major ways in which meteoritic minerals form – from condensation in the expanding atmospheres of dying stars to crystallization in deep-seated magmas, from flash-melting in the solar nebula to weathering in the terrestrial environment. Containing spectacular back-scattered electron images, colour photographs of meteorite minerals, and with an accompanying online list of meteorite minerals, this book provides a useful resource for meteorite researchers, terrestrial mineralogists, cosmochemists and planetary scientists, as well as graduate students in these fields