Download Free Metals And Metalloids In Soil Plant Water Systems Book in PDF and EPUB Free Download. You can read online Metals And Metalloids In Soil Plant Water Systems and write the review.

Metals and Metalloids in Soil-Plant-Water Systems: Phytophysiology and Remediation Techniques examines the impact of metal/metalloid contamination on the plant lifecycle, along with microbes present in soil. Highlighting uptake and translocation, the book also examines antioxidant, photosynthesis and growth characteristics of plants grown in metal contaminated soil. Beginning with an introduction to different sources of soil and water pollution, chapters assess the environmental cytotoxicity pollution impact on plants, as well as how the generation of reactive oxygen and nitrogen species in plant tissues is affected. The book also discusses various soil remediation methodologies, including the potential applications of metal oxidizing microbes and nanomaterials. This is an essential resource for researchers and students interested in plant physiology, soil science, environmental science and agriculture. - Provides a comprehensive overview of metal and metalloids speciation, fractionation, bioavailability and transfer to plants - Analyzes properties of plants grown with excess metals/metalloids in soils - Highlights applications of biochar and other biostimulants for sustainable metal/metalloid remediation
Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.
Plant Metal Interaction: Emerging Remediation Techniques covers different heavy metals and their effect on soils and plants, along with the remediation techniques currently available. As cultivable land is declining day-by-day as a result of increased metals in our soil and water, there is an urgent need to remediate these effects. This multi-contributed book is divided into four sections covering the whole of plant metal interactions, including heavy metals, approaches to alleviate heavy metal stress, microbial approaches to remove heavy metals, and phytoremediation. - Provides an overview of the effect of different heavy metals on growth, biochemical reactions, and physiology of various plants - Serves as a reference guide for available techniques, challenges, and possible solutions in heavy metal remediation - Covers sustainable technologies in uptake and removal of heavy metals
This third edition of the book has been completely re-written, providing a wider scope and enhanced coverage. It covers the general principles of the natural occurrence, pollution sources, chemical analysis, soil chemical behaviour and soil-plant-animal relationships of heavy metals and metalloids, followed by a detailed coverage of 21 individual elements, including: antimony, arsenic, barium, cadmium, chromium, cobalt, copper, gold, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, tungsten, uranium, vanadium and zinc. The book is highly relevant for those involved in environmental science, soil science, geochemistry, agronomy, environmental health, and environmental engineering, including specialists responsible for the management and clean-up of contaminated land.
Report, the editors replaced the term "speciation" wherever it occurred by "identification and quantification," or "description of abundance," or "reactivity," or "transformation" of a chemical species, according to whichever one of the four meanings the author had evidently meant to convey. In line with the Dahlem Workshop Model, this Report comprises the background papers written in advance of the meeting on the current status of problems in environmental research and on advanced analytical tech niques for the identification and quantification of chemical species, as well as the group reports summarizing the results of the discussions held during the meeting. Each group report was prepared during the meeting by one "rapporteur" with the help of members of that group and finalized by the rapporteur (listed as the first author of the group report) after the meeting, taking into account both verbal comments made during the presentation of the reports in the plenary session at the end of the workshop and written comments received afterwards.
This title focuses on the many aspects of the interaction between plants and heavy metals. Not only it describes the effects of heavy metal toxicity on the plant cell and its organs but it also examines the mechanisms that plants adopt to scavenge heavy metals at cellular, physiological, and metabolic level. Plants and Heavy Metals also analyses Hyperaccumulator plants and shows their potential role in phytoremediation technologies in light of the recent research results.
This contributed volume focuses on the latest innovations in the field of marine microbiology. Marine ecosystems are dynamic natural resources and home to very primitive life forms. They include open sea, deep sea, coastal marine ecosystem mudflats, seagrass meadows, mangroves, and rocky intertidal systems. This book deals with the various aspects of marine microbiology including diverse habitats, associated microorganisms, their adaptations, ecological interactions, biogeochemical cycling, and industrial applications. It also discusses the issue of pollution in oceans and put forward available strategies for its eco-friendly solution. In recent years, extensive research, advanced methodologies, and high-throughput instrumentation have resulted in voluminous data and information that require proper compilation and worldwide sharing. From this perspective, the book is a perfect documentation of primary and secondary data-based information on the latest research findings, case studies, experiences, and innovations in the field of marine microbiology. The book is of great use to students, researchers and professionals studying marine sciences.