Download Free Metal To Ligand Electron Transfer For Molecular Activation And Catalysis Book in PDF and EPUB Free Download. You can read online Metal To Ligand Electron Transfer For Molecular Activation And Catalysis and write the review.

Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.
Over the past decade the topic of energy and environment has been ackno- edged among many people as a critical issue to be solved in 21st century since the Kyoto Protocol came into e?ect in 1997. Its political recognition was put forward especially at Heiligendamm in 2007, when the e?ect of carbon dioxide emission and its hazard in global climate were discussed and shared univ- sallyascommonknowledge.Controllingtheglobalwarmingintheeconomical framework of massive development worldwide through this new century is a very challenging problem not only among political, economical, or social c- cles but also among technological or scienti?c communities. As long as the humans depend on the combustion of fossil for energy resources, the waste heat exhaustion and CO emission are inevitable. 2 In order to establish a new era of energy saving and environment benign society, which is supported by technologies and with social consensus, it is important to seek for a framework where new clean energy system is inc- porated as infrastructure for industry and human activities. Such a society strongly needs innovative technologies of least CO emission and e?cient en- 2 ergy conversion and utilization from remaining fossil energies on the Earth. Energy recycling system utilizing natural renewable energies and their c- version to hydrogen may be the most desirable option of future clean energy society. Thus the society should strive to change its energy basis, from foss- consuming energy to clean and recycling energy.
This series provides inorganic chemists and materials scientists with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 58 continues to report recent advances with a significant, up-to-date selection of contributions by internationally-recognized researchers. The chapters of this volume are devoted to the following topics: • Tris(dithiolene) Chemistry: A Golden Jubilee • How to find an HNO needle in a (bio)-chemical Haystack • Photoactive Metal Nitrosyl and Carbonyl Complexes Derived from Designed Auxiliary Ligands: An Emerging Class of Photochemotherapeutics • Metal--Metal Bond-Containing Complexes as Catalysts for C--H Functionalization Iron Catalysis in Synthetic Chemistry • Reactive Transition Metal Nitride Complexes Suitable for inorganic chemists and materials scientists in academia, government, and industries including pharmaceutical, fine chemical, biotech, and agricultural.
Homogeneous Catalysis by Metal Complexes, Volume I: Activation of Small Inorganic Molecules reviews and systematizes the chemistry of the metal ion activation of the small diatomic molecules. The book discusses the activation of molecular hydrogen, molecular oxygen, molecular nitrogen, carbon monoxide, and nitric oxide.
Juan I. Padrón and Víctor S. Martín: Catalysis by means of Fe-based Lewis acids; Hiroshi Nakazawa*, Masumi Itazaki: Fe–H Complexes in Catalysis; Kristin Schröder, Kathrin Junge, Bianca Bitterlich, and Matthias Beller: Fe-catalyzed Oxidation Reactions of Olefins, Alkanes and Alcohols: Involvement of Oxo- and Peroxo Complexes; Chi-Ming Che, Cong-Ying Zhou, Ella Lai-Ming Wong: Catalysis by Fe=X Complexes (X=NR, CR2); René Peters, Daniel F. Fischer and Sascha Jautze: Ferrocene and Half Sandwich Complexes as Catalysts with Iron Participation; Markus Jegelka, Bernd Plietker: Catalysis by Means of Complex Ferrates.
This monograph consists of the proceedings of the Fifth International Symposium on the Activation of Dioxygen and Homogeneous Catalytic Oxidation, held in College Station, Texas, March 14-19, 1993. It contains an introductory chapter authored by Professors D. H. R. Barton and D. T. Sawyer, and twenty-nine chapters describing presentations by the plenary lecturers and invited speakers. One of the invited speakers, who could not submit a manuscript for reasons beyond his control, is represented by an abstract of his lecture. Also included are abstracts of forty-seven posters contributed by participants in the symposium. Readers who may wish to know more about the subjects presented in abstract form are invited to communicate directly with the authors of the abstracts. This is the fifth international symposium that has been held on this subject. The first was hosted by the CNRS, May 21-29, 1979, in Bendor, France (on the Island of Bandol). The second meeting was organized as a NATO workshop in Padova, Italy, June 24-27, 1984. This was followed by a meeting in Tsukuba, Japan, July 12-16, 1987. The fourth symposium was held at Balatonfured, Hungary, September 10-14, 1990. The sixth meeting is scheduled to take place in Delft, The Netherlands (late Spring, 1996); the organizer and host will be Professor R. A. Sheldon.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal
The cutting edge of scientific reporting . . . PROGRESS in Inorganic Chemistry Nowhere is creative scientific talent busier than in the world of inorganic chemistry experimentation. Progress in Inorganic Chemistry continues in its tradition of being the most respected avenue for exchanging innovative research. This series provides inorganic chemists and materials scientists with a forum for critical, authoritative evaluations of advances in every area of the discipline. With contributions from internationally renowned chemists, this latest volume offers an in-depth, far-ranging examination of the changing face of the field, providing a tantalizing glimpse of the emerging state of the science. "This series is distinguished not only by its scope and breadth, but also by the depth and quality of the reviews." —Journal of the American Chemical Society "[This series] has won a deservedly honored place on the bookshelf of the chemist attempting to keep afloat in the torrent of original papers on inorganic chemistry." —Chemistry in Britain CONTENTS OF VOLUME 54: Atomlike Building Units of Adjustable Character: Solid-State and Solution Routes to Manipulating Hexanuclear Transition Metal Chalcohalide Clusters (Eric J. Welch and Jeffrey R. Long) Doped Semiconductor Nanocrystals: Synthesis, Characterization, Physical Properties, and Applications (J. Daniel Bryan and Daniel R. Gamelin) Stereochemical Aspects of Metal Xanthane Complexes: Molecular Structures and Supramolecular Self-Assembly (Edward R. T. Tiekink and Ionel Haiduc) Trivalent Uranium: A Versatile Species for Molecular Activation (Ilia Korobkov and Sandro Gambarotta) Comparison of the Chemical Biology of NO and HNO: An Inorganic Perspective (Katrina M. Miranda and David A. Wink) Alterations of Nucleobase pKa Values upon Metal Coordination: Origins and Consequences (Bernhard Lippert) Functionalization of Myoglobin (Yoshihito Watanabe and Takashi Hayashi)
Vor allem an Studenten fortgeschrittener Semester und Doktoranden gerichtet ist dieses Lehrbuch der Katalyse mit metallorganischen Verbindungen, das auch biologisch relevanten Reaktionen viel Platz einräumt. Hervorragend zum Selbststudium geeignet - mit zahlreichen Übungsaufgaben, nach Schwierigkeitsgraden geordnet und durch Lösungen ergänzt.
Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.