Download Free Metal Surface Reaction Energetics Book in PDF and EPUB Free Download. You can read online Metal Surface Reaction Energetics and write the review.

Principles of Adsorption and Reaction on Solid Surfaces As with other books in the field, Principles of Adsorption and Reaction on Solid Surfaces describes what occurs when gases come in contact with various solid surfaces. But, unlike all the others, it also explains why. While the theory of surface reactions is still under active development, the approach Dr. Richard Masel takes in this book is to outline general principles derived from thermodynamics and reaction rate theory that can be applied to reactions on surfaces, and to indicate ways in which these principles may be applied. The book also provides a comprehensive treatment of the latest quantitative surface modeling techniques with numerous examples of their use in the fields of chemical engineering, physical chemistry, and materials science. A valuable working resource and an excellent graduate-level text, Principles of Adsorption and Reaction on Solid Surfaces provides readers with: * A detailed look at the latest advances in understanding and quantifying reactions on surfaces * In-depth reviews of all crucial background material * 40 solved examples illustrating how the methods apply to catalysis, physical vapor deposition, chemical vapor deposition, electrochemistry, and more * 340 problems and practice exercises * Sample computer programs * Universal plots of many key quantities * Detailed, class-tested derivations to help clarify key results The recent development of quantitative techniques for modeling surface reactions has led to a number of exciting breakthroughs in our understanding of what happens when gases come in contact with solid surfaces. While many books have appeared describing various experimental modeling techniques and the results obtained through their application, until now, there has been no single-volume reference devoted to the fundamental principles governing the processes observed. The first book to focus on governing principles rather than experimental techniques or specific results, Principles of Adsorption and Reaction on Solid Surfaces provides students and professionals with a quantitative treatment of the application of principles derived from the fields of thermodynamics and reaction rate theory to the investigation of gas adsorption and reaction on solid surfaces. Writing for a broad-based audience including, among others, chemical engineers, chemists, and materials scientists, Dr. Richard I. Masel deftly balances basic background in areas such as statistical mechanics and kinetics with more advanced applications in specialized areas. Principles of Adsorption and Reaction on Solid Surfaces was also designed to provide readers an opportunity to quickly familiarize themselves with all of the important quantitative surface modeling techniques now in use. To that end, the author has included all of the key equations involved as well as numerous real-world illustrations and solved examples that help to illustrate how the equations can be applied. He has also provided computer programs along with universal plots that make it easy for readers to apply results to their own problems with little computational effort. Principles of Adsorption and Reaction on Solid Surfaces is a valuable working resource for chemical engineers, physical chemists, and materials scientists, and an excellent text for graduate students in those disciplines.
Homogeneous catalysis by soluble metal complexes has gained considerable attention due to its unique applications and features such as high activity and selectivity. Catalysis of this type has demonstrated impressive achievements in synthetic organic chemistry and commercial chemical technology. Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms presents a comprehensive summary of the results obtained over the last sixty years in the field of the kinetics and mechanisms of organic and inorganic reactions catalyzed with metal complexes. Topics covered include: Specific features of catalytic reaction kinetics in the presence of various mono- and polynuclear metal complexes and nanoclusters Multi-route mechanisms and the methods of their identification, as well as approaches to the kinetics of polyfunctional catalytic systems Principles and features of the dynamic behavior of nonlinear kinetic models The potential, achievements, and limitations of applying the kinetic approach to the identification of complex reaction mechanisms The development of a rational strategy for designing kinetic models The kinetic models and mechanisms of many homogeneous catalytic processes employed in synthetic and commercial chemistry Written for specialists in the field of kinetics and catalysis, this book is also relevant for post-graduates engaged in the study
Proceedings of a Summer School at Michigan State University held in East Lansing, Michigan, July 17-19, 1994
Many processes of the chemical industry are based upon heterogeneous catalysis. Two important items of these processes are the development of the catalyst itself and the design and optimization of the reactor. Both aspects would benefit from rigorous and accurate kinetic modeling, based upon information on the working catalyst gained from classical steady state experimentation, but also from studies using surface science techniques, from quantum chemical calculations providing more insight into possible reaction pathways and from transient experimentation dealing with reactions and reactors. This information is seldom combined into a kinetic model and into a quantitative description of the process. Generally the catalytic aspects are dealt with by chemists and by physicists, while the chemical engineers are called upon for mechanical aspects of the reactor design and its control. The symposium "Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis" aims at illustrating a more global and concerted approach through a number of prestigious keynote lectures and severely screened oral and poster presentations.
Imagine that a young physicist would approach a granting agen cy and propose to contribute to heterogeneous catalysis by studying the heat conductivity of gases in contact with a hot filament. How would he be received now? How would he have been treated sixty years ago ? Yet, more than sixty years ago, Irving Langmuir, through his study of heat transfer from a tungsten filament, uncovered most of the fundamental ideas which are used to-day by the scientific com munity in pure and applied heterogeneous catalysis. Through his work with what were for the first time "clean" metal surfaces, Langmuir formulated during a period of a little over ten years un til the early thirties, the concepts of chemisorption, monolayer, adsorption sites, adsorption isotherm, sticking probability, cata lytic mechanisms by way of the interaction between chemisorbed spe cies, behavior of non-uniform surfaces and repulsion between adsor bed dipoles. It is fair to say that many of these ideas constituting the first revolution in surface chemistry have since been refined through thousands of investigations. Countless papers have been pu blished on the subject of the Langmuir adsorption isotherm, the Langmuir catalytic kinetics and the Langmuir site-exclusion adsorp tion kinetics. The refinements have been significant. ThE original concepts in their primitive or amended form are used everyday by catalytic chemists and chemical engineers allover the world in their treatment of experimental data, design of reactors or inven tion of new processes.
This comprehensive book on Nanoclusters comprises sixteen authoritative chapters written by leading researchers in the field. It provides insight into topics that are currently at the cutting edge of cluster science, with the main focus on metal and metal compound systems that are of particular interest in materials science, and also on aspects related to biology and medicine. While there are numerous books on clusters, the focus on clusters as a bridge across disciplines sets this book apart from others. Delivers cutting edge coverage of cluster science Covers a broad range of topics in physics, chemistry, and materials science Written by leading researchers in the field
The development of "high-tech" materials in contemporary industries is deeply related to a detailed understanding of specific surface properties of catalysts which make particular reactions possible. But this understanding presupposes that there exists a body of theory capable of explaining situations not easily accessible to experimental methods and of relating experimental findings among themselves and with theoretical constructs. For these reasons, theoretical developments in surface physics and surface chemistry of transition metal compounds have been of paramount importance in promoting progress in catalysis, electronic devices, corrosion, etc. Although a great variety of spectroscopic methods for analyzing solids and surfaces at molecular scale have been introduced in recent years, nevertheless, many questions about the adsorption sites and intermediates, the effect of promoters, the poisoning of active sites, the nature of segregation of impurities, the process of surface reconstruction, the mechanisms of reactions, etc. have remained unanswered simply because of the great complexity of surface phenomena. It is in this sense that quantum mechanical method- combined with experimental data - may shed some light on the microscopic properties of new surface materials.
Reactions with metals are ubiquitous in organic synthesis and, particularly in the last few years, a large repertoire of methods for the activation of metals and for their use in organic synthesis has been developed. In Active Metals, topics ranging from morphology of metal clusters and nanometallurgy to organometallic chemistry, catalysis and the use of activated metals in natural product synthesis are authoritatively discussed by leading experts in the field. Active Metals will allow you to fully benefit from the recent advances in the field by giving: * Detailed experimental procedures * Guidance on manipulation of active metals under inert atmosphere * Valuable information for planning syntheses * Extensive tables of typical conversions with yields * Critically selected, up-to-date references This handbook is a unique source of 'hands-on' information which will allow you to expand the scope of your research.