Download Free Metal Nanoparticles For Drug Delivery And Diagnostic Applications Book in PDF and EPUB Free Download. You can read online Metal Nanoparticles For Drug Delivery And Diagnostic Applications and write the review.

Metal Nanoparticles for Drug Delivery and Diagnostic Applications addresses the lifecycle of metal nanoparticles, from synthesis and characterization, to applications in drug delivery and targeting. It is an important resource for those in biomaterials, nanomedicine and pharmaceutical sciences, exploring gold, silver and iron-based drug delivery systems for controlled and targeted delivery of potential drugs and genes for enhanced clinical efficacy. Nanotechnology is widely used in drug delivery due to its ability to reduce plasma fluctuation of drugs, high solubility, and efficiency, the relatively low cost of nanoscale products, and enhancement of patient comfort, hence this resource is a welcome edition to the science.
Metal Nanoparticles for Drug Delivery and Diagnostic Applications addresses the lifecycle of metal nanoparticles, from synthesis and characterization, to applications in drug delivery and targeting. It is an important resource for those in biomaterials, nanomedicine and pharmaceutical sciences, exploring gold, silver and iron-based drug delivery systems for controlled and targeted delivery of potential drugs and genes for enhanced clinical efficacy. Nanotechnology is widely used in drug delivery due to its ability to reduce plasma fluctuation of drugs, high solubility, and efficiency, the relatively low cost of nanoscale products, and enhancement of patient comfort, hence this resource is a welcome edition to the science. - Illustrates the progression of nanoparticle therapeutics from basic research to applications - Explores new opportunities and ideas for developing and improving technologies in nanomedicine and nanobiology - Discusses the toxicity of different types of metal nanoparticles and how to ensure their safe use
Completely dedicated to the biomedical applications of metal nanoparticles, this book covers the different toxicity problems found in healthcare situations and also provides comprehensive info on the use of metal nanoparticles in treating various diseases. Metal Nanoparticles in Pharma is the first edited volume to set up the discussion for a clinical setting and to target a pharmaceutical audience of academic and industry-based researchers.
Nanoparticles in Pharmacotherapy explores the most recent findings on how nanoparticles are used in pharmacotherapy, starting with their synthesis, characterization and current or potential uses. This book is a valuable resource of recent scientific progress that includes the most cutting-edge applications of nanoparticles in pharmacotherapy. It is ideal for researchers, medical doctors and those in academia.
Nanomedicine is a developing field, which includes different disciplines such as material science, chemistry, engineering and medicine devoted to the design, synthesis and construction of high-tech nanostructures. The ability of these structures to have their chemical and physical properties tuned by structural modification, has allowed their use in drug delivery systems, gene therapy delivery, and various types of theranostic approaches. Colloidal noble metal nanoparticles and other nanostructures have many therapeutic and diagnostic applications. The concept of drug targeting as a magic bullet has led to much research in chemical modification to design and optimize the binding to targeted receptors. It is important to understand the precise relationship between the drug and the carrier and its ability to target specific tissues, and pathogens to make an efficient drug delivery system. This book covers advances based on different drug delivery systems: polymeric and hyper branched nanomaterials, carbon-based nanomaterials, nature-inspired nanomaterials, and pathogen-based carriers.
Inorganic Frameworks as Smart Nanocarriers for Drug Delivery brings together recent research in the area of inorganic frameworks for drug delivery. Different types of nanocarriers are presented and discussed in detail, providing an up-to-date overview on inorganic nanoparticles with pharmaceutical applications. Written by a diverse range of international academics, this book is a valuable reference resource for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of inorganic smart nanocarriers. - Includes assembly methods for a variety of smart nanocarrier systems, also showing how they are applied - Highlights how metal-oxide nanoparticles are effectively used in drug delivery - Assesses the pros and cons of different metallic nanomaterials as drug carriers
Design of Nanostructures for Theranostics Applications focuses on the theranostics applications of nanostructures. In particular, multifunctional nanoparticles for diagnostics and treatment of different diseases, including those relating to the blood-brain barrier, are discussed in detail. Chapters explore different type of nanostructures, covering design, fabrication, functionalization and optimization, helping readers obtain the desired properties. Written by a diverse range of international academics, this book is a valuable reference resource for those working in both nanoscience and the pharmaceutical industry. - Explores how the design of a range of nanomaterials make them effective theranostic agents, including multifunctional core-shell nanostructures, mesoporous silica nanoparticles, and quantum dots - Shows how nanomaterials are used effectively for a range of diseases, including breast cancer, prostate cancer and neurological disorders - Assesses the pros and cons of using different nanomaterials for different types of treatment
This book collects reviews and original articles from eminent experts working in the interdisciplinary arena of nanotechnology use in drug delivery. From their direct and recent experience, the readers can achieve a wide vision on the new and ongoing potentialities of nanotechnology application of drug delivery. Since the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. On the other hand, this reference discusses advances in design, optimization, and adaptation of gene delivery systems for the treatment of cancer, cardiovascular, pulmonary, genetic, and infectious diseases, and considers assessment and review procedures involved in the development of gene-based pharmaceuticals.
Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles
Metallic nanoparticles display fascinating properties that are quite different from those of individual atoms, surfaces or bulk rmaterials. They are a focus of interest for fundamental science and, because of their huge potential in nanotechnology, they are the subject of intense research effort in a range of disciplines. Applications, or potential applications, are diverse and interdisciplinary. They include, for example, use in biochemistry, in catalysis and as chemical and biological sensors, as systems for nanoelectronics and nanostructured magnetism (e.g. data storage devices), where the drive for further miniaturization provides tremendous technological challenges and, in medicine, there is interest in their potential as agents for drug delivery.The book describes the structure of metallic nanoparticles, the experimental and theoretical techniques by which this is determined, and the models employed to facilitate understanding. The various methods for the production of nanoparticles are outlined. It surveys the properties of clusters and the methods of characterisation, such as photoionization, optical spectroscopy, chemical reactivity and magnetic behaviour, and discusses element-specific information that can be extracted by synchrotron-based techniques such as EXAFS, XMCD and XMLD. The properties of clusters can vary depending on whether they are free, deposited on a surface or embedded in a matrix of another material; these issues are explored. Clusters on a surface can be formed by the diffusion and aggregation of atoms; ways of modelling these processes are described. Finally we look at nanotechnology and examine the science behind the potential of metallic nanoparticles in chemical synthesis, catalysis, the magnetic separation of biomolecules, the detection of DNA, the controlled release of molecules and their relevance to data storage.The book addresses a wide audience. There was a huge development of the subject beginning in the mid-1980s where researchers began to study the properties of free nanoparticle and models were developed to describe the observations. The newcomer is introduced to the established models and techniques of the field without the need to refer to other sources to make the material accessible. It then takes the reader through to the latest research and provides a comprehensive list of references for those who wish to pursue particular aspects in more detail. It will also be an invaluable handbook for the expert in a particular aspect of nanoscale research who wishes to acquire knowledge of other areas.The authors are specialists in different aspects of the subject with expertise in physics and chemistry, experimental techniques and computational modelling, and in interdisciplinary research. They have collaborated in research. They have also collaborated in writing this book, with the aim from the outset of making it is a coherent whole rather than a series of independent loosely connected articles.* Appeals to a wide audience* Provides an introduction to established models and techniques in the field* Comprehensive list of references