Download Free Metal Metal Oxides And Metal Sulphides For Biomedical Applications Book in PDF and EPUB Free Download. You can read online Metal Metal Oxides And Metal Sulphides For Biomedical Applications and write the review.

This book presents recent advances in inorganic nanomaterials for healthcare, with focus on the synthesis, medical applications and toxicity of metals, metal oxides and metal sulfides. Major applications include diagnosis, bioimaging, biosensing, healing and therapy in cancer, diabetes, cardiovascular diseases, obesity, metabolic syndrome, dentistry and antimicrobials.
This book presents recent advances in inorganic nanomaterials for healthcare, with focus on the synthesis, medical applications and toxicity of metals, metal oxides and metal sulfides. Major applications include diagnosis, bioimaging, biosensing, healing and therapy in cancer, diabetes, cardiovascular diseases, obesity, metabolic syndrome, dentistry and antimicrobials.
This book explores in depth a wide range of functional biomaterials-based systems for drug, gene delivery, and biomedical aspects. The chapters cover newer technologies such as polymeric micelle, pH-responsive biomaterials, stimuli-responsive hydrogels, silk fibroin, inorganic biomaterials, synthetic biomaterials, 3D printed biomaterials, metallic biomaterials, ceramic and hybrid biomaterials. It also describes the theranostic approaches for cancer therapy, the biomaterials-based nanofibers scaffolds in tissue engineering, as well as the strategies applications of metallic biomaterials for the medical and dental prosthetic field. This newer and updated approach will be attractive for biomedical engineering students working on materials science in the development of novel drug delivery strategies. The book will be an important reference for researchers and professionals working on biomaterial research in the pharmaceutical and medical fields.
Nanostructured materials with tailored properties are regarded as a fundamental element in the development of future science and technology. Research is still ongoing into the nanosized construction elements required to create functional solids. The recently developed technique, nanocasting, has great advantage over others in terms of the synthesis of special nanostructured materials by the careful choice of suitable elements and nanoengineering steps. This new book summarizes the recent developments in nanocasting, including the principles of nanocasting, syntheses of novel nanostructured materials, characterization methods, detailed synthetic recipes and further possible development in this area. The book focuses on the synthesis of porous solids from the viewpoint of methodology and introduces the science of nanocasting from fundamental principles to their use in synthesis of various materials. It starts by outlining the principles of nanocasting, requirements to the templates and precursors and the tools needed to probe matter at the nanoscale level. It describes how to synthesize nano structured porous solids with defined characteristics and finally discusses the functionalization and application of porous solids. Special attention is given to new developments in this field and future perspectives. A useful appendix covering the detailed synthetic recipes of various templates including porous silica, porous carbon and colloidal spheres is included which will be invaluable to researchers wanting to follow and reproduce nanocast materials. Topics covered in the book include: * inorganic chemistry * organic chemistry * solution chemistry * sol-gel and interface science * acid-base equilibria * electrochemistry * biochemistry * confined synthesis The book gives readers not only an overview of nanocasting technology, but also sufficient information and knowledge for those wanting to prepare various nanostructured materials without needing to search the available literature.
This book summarizes recent findings on the use of new nanostructured materials for biofuels, batteries, fuel cells, solar cells, supercapacitors and health biosensors. Chapters describe principles and how to choose a nanomaterial for specific applications in energy, environment and medicine.
Biomaterials in Endodontics offers an up-to-date overview of endodontic biomaterials and their applications in regenerative medicine and tissue engineering. This book details the key biomaterials used in clinical endodontics and the benefits and challenges of using these materials, from root canal obturation materials to alloys for endodontic files and hand instruments. Chapters also offer a unique insight into the regenerative applications of endodontic biomaterials, such as the use of stem cells and growth factors for bone regeneration. Biomaterials in Endodontics is a useful resource for researchers working in biomedical engineering, regenerative medicine, and materials science with an interest in dentistry and bone regeneration. This book is also a helpful guide for endodontists, dentists, dental scientists, and clinicians with an interest in biomaterials for endodontics. - Details the latest innovations in materials used for endodontic procedures - Offers a unique insight into regenerative applications of endodontic biomaterials - Appeals to an interdisciplinary readership, combining materials science, regenerative medicine, and biomedical engineering approaches
Nanomaterials can be synthesized by physical, chemical, and biological methods; however, the latter technique is preferred as it is eco-friendly, non-toxic, and cost-effective. The green synthesized nanomaterials have been found to be more efficient with potential applications in diverse fields. It is crucial to explore green synthesized nanomaterials and the applications that can be made in order to support water remediation, pharmaceuticals, food processing, construction, and more. The Handbook of Research on Green Synthesis and Applications of Nanomaterials provides a multidisciplinary approach to the awareness of using non-toxic, eco-friendly, and economical green techniques for the synthesis of various nanomaterials, as well as their applications across a variety of fields. Covering topics such as antimicrobial applications, environmental remediation, and green synthesis, this book acts as a thorough reference for engineers, nanotechnology professionals, academicians, students, scientists, and researchers pursuing research in the nanotechnology field.
This book features selected articles based on contributions presented at the 9th International Symposium on Optics and Its Applications (OPTICS-2022) in Yerevan-Ashtarak, Armenia. The annual OPTICS symposium brings together renowned experts from all over the world working in the fields of atomic optics, plasmonics, optics of nanostructures, as well as the optics of condensed matter, and provides a perfect setting for their discussions of the most recent developments in this area. The 9th iteration in this series, dedicated to the 80th birthday of Academician Eduard Kazaryan, focuses on topics dealing with the spectroscopy of real and artificial atoms, linear and nonlinear optical characteristics of quantum wells, and two-dimensional materials. The book highlights recent results of few-particle optical characteristics of artificial atoms in the framework of the exactly solvable Moshinsky model, as well as an electro-optical analog of the magneto-optical Faraday effect. In addition, a detailed study of the nucleation process, its characterization, as well as electronic and optical properties of graded composition quantum dots in the Stranski−Krastanov growth mode, is presented.
In the field of materials science, traditional materials often fall short in meeting the demands of contemporary industries, where multifunctionality, enhanced performance, and adaptability are pivotal. This unmet need highlights a compelling problem—a gap in materials that can truly revolutionize various sectors. As industries strive for advancements, a new challenge emerges: the scarcity of materials capable of performing multiple functions efficiently across domains. This predicament forms the backdrop against which Innovations and Applications of Hybrid Nanomaterials offers a comprehensive exploration of hybrid nanomaterials poised to bridge this critical gap. Innovations and Applications of Hybrid Nanomaterials addresses the urgent need for materials that transcend conventional boundaries, providing heightened performance, efficiency, and adaptability across diverse industries. The book dissects the design and development principles behind hybrid nanocomposites, unraveling the latest fabrication techniques and advanced characterization methods. Each chapter explores the profound impact of these materials in specific technological applications, ranging from electronics and energy to aerospace, biomedical engineering, and environmental sensing. Delve into a compendium of state-of-the-art methodologies enabling researchers to engineer materials with unparalleled precision, recognizing the transformative potential of multifunctional materials and unveiling their advantages, challenges, and future trajectories.
This book presents advanced synthesis techniques adopted to fabricate two-dimensional (2D) transition metal dichalcogenides (TMDs) materials with its enhanced properties towards their utilization in various applications such as, energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing and biomedical applications. It provides detailed coverage on everything from the synthesis and properties to the applications and future prospects of research in 2D TMD nanomaterials.