Download Free Metal Ions In Biological Systems Vanadium And Its Role In Life Book in PDF and EPUB Free Download. You can read online Metal Ions In Biological Systems Vanadium And Its Role In Life and write the review.

"Volume 31, devoted solely to the role of vanadium in life processes, offers a comprehensive and timely account of this fascinating field by 37 distinguished, international authorities. Highlights the properties of the various oxidation states of vanadium, their affinity for biogenic ligands, the effects of vanadium species on enzyme activity, the role of vanadium in nitrogenases and haloperoxidases, and more."
Over the past several decades, vanadium has increasingly attracted the interest of biologists and chemists. The discovery by Henze in 1911 that certain marine ascidians accumulate the metal in their blood cells in unusually large quantities has done much to stimulate research on the role of vanadium in biology. In the intervening years, a large number of studies have been carried out to investigate the toxicity of vanadium in higher animals and to determine whether it is an essential trace element. That vanadium is a required element for a few selected organisms is now well established. Whether vanadium is essential for humans remains unclear although evidence increasingly suggests that it probably is. The discovery by Cantley in 1977 that vanadate is a potent inhibitor of ATPases lead to numerous studies of the inhibitory and stimulatory effects of vanadium on phosphate metabolizing enzymes. As a consequence vanadates are now routinely used as probes to investigate the mechanisms of such enzymes. Our understanding of vanadium in these systems has been further enhanced by the work of Tracy and Gresser which has shown striking parallels between the chemistry of vanadates and phosphates and their biological compounds. The observation by Shechter and Karlish, and Dubyak and Kleinzeller in 1980 that vanadate is an insulin mimetic agent has opened a new area of research dealing with the hormonal effects of vanadium. The first vanadium containing enzyme, a bromoperoxidase from the marine alga Ascophyllum nodosum, was isolated in 1984 by Viltner.
Metal ions are fundamental elements for the maintenance of the lifespan of plants, animals and humans. Their substantial role in biological systems was recognized a long time ago. They are essential for the maintenance of life and their absence can cause growth disorders, severe malfunction, carcinogenesis or death. They are protagonists as macro- or microelements in several structural and functional roles, participating in many bio-chemical reactions, and arise in several forms. They participate in intra- and intercellular communications, in maintaining electrical charges and osmotic pressure, in photosynthesis and electron transfer processes, in the maintenance of pairing, stacking and the stability of nucleotide bases and also in the regulation of DNA transcription. They contribute to the proper functioning of nerve cells, muscle cells, the brain and the heart, the transport of oxygen and to many other biological processes up to the point that we cannot even imagine a life without metals. In this book, the papers published in the Special Issue “The Role of Metal Ions in Biology, Biochemistry and Medicine” are summarized, providing a picture of metal ion uses in biology, biochemistry and medicine, but also pointing out the toxicity impacts on plants, animals, humans and the environment.
MILS-13 provides an up-to-date review on the relationships between essential metals and human diseases, covering 13 metals and 3 metalloids: The bulk metals sodium, potassium, magnesium, and calcium, plus the trace elements manganese, iron, cobalt, copper, zinc, molybdenum, and selenium, all of which are essential for life. Also covered are chromium, vanadium, nickel, silicon, and arsenic, which have been proposed as being essential for humans in the 2nd half of the last century. However, if at all, they are needed only in ultra-trace amounts, and because of their prevalence in the environment, it has been difficult to prove whether or not they are required. In any case, all these elements are toxic in higher concentrations and therefore, transport and cellular concentrations of at least the essential ones, are tightly controlled; hence, their homeostasis and role for life, including deficiency or overload, and their links to illnesses, including cancer and neurological disorders, are thoroughly discussed. Indeed, it is an old wisdom that metals are indispensable for life. Therefore, Volume 13 provides in an authoritative and timely manner in 16 stimulating chapters, written by 29 internationally recognized experts from 7 nations, and supported by more than 2750 references, and over 20 tables and 80 illustrations, many in color, a most up-to-date view on the vibrant research area of the Interrelations between Essential Metal Ions and Human Diseases.
Metal ions are fundamental elements for the maintenance of the lifespan of plants, animals and humans. Their substantial role in biological systems was recognized a long time ago. They are essential for the maintenance of life and their absence can cause growth disorders, severe malfunction, carcinogenesis or death. They are protagonists as macro- or microelements in several structural and functional roles, participating in many bio-chemical reactions, and arise in several forms. They participate in intra- and intercellular communications, in maintaining electrical charges and osmotic pressure, in photosynthesis and electron transfer processes, in the maintenance of pairing, stacking and the stability of nucleotide bases and also in the regulation of DNA transcription. They contribute to the proper functioning of nerve cells, muscle cells, the brain and the heart, the transport of oxygen and to many other biological processes up to the point that we cannot even imagine a life without metals. In this book, the papers published in the Special Issue “The Role of Metal Ions in Biology, Biochemistry and Medicine” are summarized, providing a picture of metal ion uses in biology, biochemistry and medicine, but also pointing out the toxicity impacts on plants, animals, humans and the environment.
Metal Ions in Biological Systems is devoted to increasing our understanding of the relationship between the chemistry of metals and life processes. The volumes reflect the interdisciplinary nature of bioinorganic chemistry and coordinate the efforts of researchers in the fields of biochemistry, inorganic chemistry, coordination chemistry, environmental chemistry, biophysics, pharmacy, and medicine. Volumes deal with such topics as the formation, stability, structure, and reactivity of biological compounds of low and high molecular weight containing metal ions; the metabolism and transport of metal ions and their complexes; and new models of complicated natural structures and processes. Volume 21 describes the underlying theories of nuclear magnetic resonance (NMR), promoting a wider use of NMR in studies of paramagnetic species. In six concise chapters by leading international authorities, Applications of Nuclear Magnetic Resonance to Paramagnetic Species outlines the most recent developments regarding the use of nuclear relaxation as a source for structural information ... examines studies of magnetically coupled metalloproteins and metal-porphyrin induced dipolar shifts for conformational analysis ... and evaluates the potential of paramagnetic ions as agents for enhancing NMR image contrast. With over 500 references that facilitate further research, Applications of Nuclear Magnetic Resonance to Paramagnetic Species is an essential resource for scientists and students in such disciplines as biophysics; bioinorganic, inorganic, and coordination chemistry; biochemistry; molecular biology; and enzymology. Book jacket.
"Highlights the availability of magnesium to organisms, its uptake and transport in microorganisms and plants as well as its role in health and disease of animals and humans including its toxicology."
Volume 39: Molybdenum and Tungsten: Their Roles in Biological Processes is devoted soley to the vital research area on molybdenum and tungsten and their role in biology. It offers a comprehensive and timely account of this fascinating topic by 40 distinguished international authorities. Topics include: transport, homeostasis, regulation and binding of molybdate and tungstate to proteins, crystallographic characterization, coordination of complexes, and biosynthesis.
Metal Ions in Biological Systems is devoted to increasing our understanding of the relationship between the chemistry of metals and life processes. The volumes reflect the interdisciplinary nature of bioinorganic chemistry and coordinate the efforts of researchers in the fields of biochemistry, inorganic chemistry, coordination chemis