Download Free Metaheuristics In Water Geotechnical And Transport Engineering Book in PDF and EPUB Free Download. You can read online Metaheuristics In Water Geotechnical And Transport Engineering and write the review.

Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are often large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in water, geotechnical and transport engineering offering practical case studies as examples to demonstrate real world applications. Topics cover a range of areas within engineering, including reviews of optimization algorithms, artificial intelligence, cuckoo search, genetic programming, neural networks, multivariate adaptive regression, swarm intelligence, genetic algorithms, ant colony optimization, evolutionary multiobjective optimization with diverse applications in engineering such as behavior of materials, geotechnical design, flood control, water distribution and signal networks. This book can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheursitics, optimization in civil engineering and computational intelligence. Provides detailed descriptions of all major metaheuristic algorithms with a focus on practical implementation Develops new hybrid and advanced methods suitable for civil engineering problems at all levels Appropriate for researchers and advanced students to help to develop their work
This book presents select proceedings of the 5th International Conference on Advances in Civil and Ecological Engineering Research (ACEER 2023). The book covers a wide range of topics, including construction engineering and management hydraulic and hydrologic engineering, air quality and atmospheric pollution, ecological risk assessment and management, restoration and protection of environment, water pollution and treatment, and water recourses engineering. This book also covers state-of-the-art technologies in building sustainable city, resilient buildings, and sustainable issues in relating to civil engineering. It will be useful for researchers and engineers working in the field of civil and ecological engineering.
The main purpose of the present book is to develop a general framework for population-based metaheuristics based on some basic concepts of set theory. The idea of the framework is to divide the population of individuals into subpopulations of identical sizes. Therefore, in each iteration of the search process, different subpopulations explore the search space independently but simultaneously. The framework aims to provide a suitable balance between exploration and exploitation during the search process. A few chapters containing algorithm-specific modifications of some state-of-the-art metaheuristics are also included to further enrich the book. The present book is addressed to those scientists, engineers, and students who wish to explore the potentials of newly developed metaheuristics. The proposed metaheuristics are not only applicable to structural optimization problems but can also be used for other engineering optimization applications. The book is likely to be of interest to a wide range of engineers and students who deal with engineering optimization problems.
This contributed volume, written by leading international researchers, reviews the latest developments of genetic programming (GP) and its key applications in solving current real world problems, such as energy conversion and management, financial analysis, engineering modeling and design, and software engineering, to name a few. Inspired by natural evolution, the use of GP has expanded significantly in the last decade in almost every area of science and engineering. Exploring applications in a variety of fields, the information in this volume can help optimize computer programs throughout the sciences. Taking a hands-on approach, this book provides an invaluable reference to practitioners, providing the necessary details required for a successful application of GP and its branches to challenging problems ranging from drought prediction to trading volatility. It also demonstrates the evolution of GP through major developments in GP studies and applications. It is suitable for advanced students who wish to use relevant book chapters as a basis to pursue further research in these areas, as well as experienced practitioners looking to apply GP to new areas. The book also offers valuable supplementary material for design courses and computation in engineering.
This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects.
This book presents essential concepts of traditional Flower Pollination Algorithm (FPA) and its recent variants and also its application to find optimal solution for a variety of real-world engineering and medical problems. Swarm intelligence-based meta-heuristic algorithms are extensively implemented to solve a variety of real-world optimization problems due to its adaptability and robustness. FPA is one of the most successful swarm intelligence procedures developed in 2012 and extensively used in various optimization tasks for more than a decade. The mathematical model of FPA is quite straightforward and easy to understand and enhance, compared to other swarm approaches. Hence, FPA has attracted attention of researchers, who are working to find the optimal solutions in variety of domains, such as N-dimensional numerical optimization, constrained/unconstrained optimization, and linear/nonlinear optimization problems. Along with the traditional bat algorithm, the enhanced versions of FPA are also considered to solve a variety of optimization problems in science, engineering, and medical applications.
Handbook of Whale Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides the most in-depth look at an emerging meta-heuristic that has been widely used in both science and industry. Whale Optimization Algorithm has been cited more than 5000 times in Google Scholar, thus solving optimization problems using this algorithm requires addressing a number of challenges including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters to name a few. This handbook provides readers with in-depth analysis of this algorithm and existing methods in the literature to cope with such challenges. The authors and editors also propose several improvements, variants and hybrids of this algorithm. Several applications are also covered to demonstrate the applicability of methods in this book. Provides in-depth analysis of equations, mathematical models and mechanisms of the Whale Optimization Algorithm Proposes different variants of the Whale Optimization Algorithm to solve binary, multiobjective, noisy, dynamic and combinatorial optimization problems Demonstrates how to design, develop and test different hybrids of Whale Optimization Algorithm Introduces several application areas of the Whale Optimization Algorithm, focusing on sustainability Includes source code from applications and algorithms that is available online
Automation and Computational Intelligence for Road Maintenance and Management A comprehensive computational intelligence toolbox for solving problems in infrastructure management In Automation and Computational Intelligence for Road Maintenance and Management, a team of accomplished researchers delivers an incisive reference that covers the latest developments in computer technology infrastructure management. The book contains an overview of foundational and emerging technologies and methods in both automation and computational intelligence, as well as detailed presentations of specific methodologies. The distinguished authors emphasize the most recent advances in the maintenance and management of infrastructure robotics, automated inspection, remote sensing, and the applications of new and emerging computing technologies, including artificial intelligence, evolutionary computing, fuzzy logic, genetic algorithms, knowledge discovery and engineering, and more. Automation and Computational Intelligence for Road Maintenance and Management explores a universal synthesis of the cutting edge in parameters and indices to evaluate models. It also includes: Thorough introductions to management science and the latest methods of automation and the structure and framework of automation and computing intelligence Comprehensive explorations of advanced image processing techniques, recent advances in fuzzy, and diagnosis automation Practical discussions of segmentation and fragmentation and different types of features and feature extraction methods In-depth examinations of methods of classification along with various developed methodologies and models of quantification, evaluation, and indexing in automation Perfect for postgraduate students in road and transportation engineering, evaluation, and assessment, Automation and Computational Intelligence for Road Maintenance and Management will also earn a place in the libraries of researchers interested in or working with the evaluation and assessment of infrastructure.
The continued growth of any nation depends largely on the development of their built infrastructures and communities. By creating stable infrastructures, countries can more easily thrive in competitive international markets. Sustainable Infrastructure: Breakthroughs in Research and Practice examines sustainable development through the lens of transportation, waste management, land use planning, and governance. Highlighting a range of topics such as sustainable development, transportation planning, and regional and urban infrastructure planning, this publication is an ideal reference source for engineers, planners, government officials, developers, policymakers, legislators, researchers, academicians, and graduate-level students seeking current research on the latest trends in sustainable infrastructure.